OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 7–20

Dynamic effects in nonlinear magneto-optics of atoms and molecules: review

Evgeniy B. Alexandrov, Marcis Auzinsh, Dmitry Budker, Derek F. Kimball, Simon M. Rochester, and Valeriy V. Yashchuk  »View Author Affiliations


JOSA B, Vol. 22, Issue 1, pp. 7-20 (2005)
http://dx.doi.org/10.1364/JOSAB.22.000007


View Full Text Article

Acrobat PDF (636 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A brief review is given of topics relating to dynamical processes arising in nonlinear interactions between light and resonant systems (atoms or molecules) in the presence of a magnetic field.

© 2005 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(270.1670) Quantum optics : Coherent optical effects

Citation
Evgeniy B. Alexandrov, Marcis Auzinsh, Dmitry Budker, Derek F. Kimball, Simon M. Rochester, and Valeriy V. Yashchuk, "Dynamic effects in nonlinear magneto-optics of atoms and molecules: review," J. Opt. Soc. Am. B 22, 7-20 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-1-7


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, "Resonant nonlinear magneto-optical effects in atoms," Rev. Mod. Phys. 74, 1153-1201 (2002).
  2. M. Auzinsh and R. Ferber, Optical Polarization of Molecules (Cambridge U. Press, Cambridge, UK, 1995).
  3. We will use the word "particle" to refer to either atoms or molecules.
  4. S. Haroche, "Quantum beats and time-resolved fluorescence spectroscopy," in High-Resolution Laser Spectroscopy , K. Shimoda, ed. (Springer, Berlin, 1976), pp. 256-313.
  5. J. N. Dodd and G. W. Series, "Time-resolved fluorescence spectroscopy," in Progress in Atomic Spectroscopy, W. Hanle and H. Kleinpoppen, eds. (Plenum, New York, 1978), Vol. 1, pp. 639-677.
  6. E. Hack and J. Huber, "Quantum-beat spectroscopy of molecules," Int. Rev. Phys. Chem. 10, 287-317 (1991).
  7. E. B. Aleksandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States (Springer-Verlag, New York, 1993).
  8. M. Auzinsh, "Angular momenta dynamics in magnetic and electric field: Classical and quantum approach," Can. J. Phys. 75, 853-872 (1997).
  9. S. M. Rochester and D. Budker, "Atomic polarization visualized," Am. J. Phys. 69, 450-454 (2001).
  10. M. P. Auzinsh and R. S. Ferber, "Optical pumping of diatomic molecules in the electronic ground state: classical and quantum approaches," Phys. Rev. A 43, 2374-2386 (1991).
  11. M. Dyakonov, "Theory of resonance scattering of light by a gas in the presence of a magnetic field," Zh. Eksp. Teor. Fiz. 47, 2213-2221 (1964).
  12. P. K. Majumder, B. J. Venema, S. K. Lamoreaux, B. R. Heckel, and E. N. Fortson, "Test of the linearity of quantum mechanics in optically pumped 201Hg," Phys. Rev. Lett. 65, 2931-2934 (1990).
  13. M. Auzinsh, "The evolution and revival structure of angular momentum quantum wave packets," Can. J. Phys. 77, 491-503 (1999).
  14. E. Aleksandrov, "Luminiscence beats induced by pulsed excitation of coherent states," Opt. Spectrosc. (USSR) 17, 522-523 (1964).
  15. J. N. Dodd, R. Kaul, and D. Warington, "The modulation of resonance fluorescence excited by pulsed light," Proc. Phys. Soc. London, Sect. A 84, 176-178 (1964).
  16. W. Lange and J. Mlynek, "Quantum beats in transmission by time-resolved polarization spectroscopy," Phys. Rev. Lett. 40, 1373-1375 (1978).
  17. J. M. Geremia, J. K. Stockton, A. C. Doherty, and H. Mabuchi, "Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry," Phys. Rev. Lett. 91, 25801 (2003).
  18. J. M. Geremia, J. K. Stockton, and H. Mabuchi, "Sub-shotnoise atomic magnetometry," (2004), http://arxiv.org/abs/quant-ph/0401107.
  19. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997).
  20. M. P. Auzinsh, D. Budker, D. F. Kimball, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, "Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer?" (2004), http://arxiv.org/abs/physics/0403097.
  21. The quantum-beat frequency must be higher than the relaxation rate for quantum-beat dynamics to be clearly observed. In molecules, for example, the excited-state relaxation rate is often dominated by radiative decay and is typically ∼108 s−1 , which is greater than the typical ground-state relaxation rate (∼106 s−1 ). Thus larger magnetic fields are required to observe excited-state Zeeman beats than for the observation of ground-state quantum beats.
  22. M. P. Auzinsh, R. S. Ferber, and I. Pirags, "K2 ground-state relaxation studies from transient process kinetics," J. Phys. B 16, 2759-2771 (1983).
  23. The idea of stroboscopic matching to increase coupling between systems (light and precessing spins in this context) is also omnipresent in the field of nuclear magnetic resonance. For example, Hahn and co-workers introduced various methods of coupling spin systems with different gyromagnetic ratios together by matching the Larmor frequency of one system to the Rabi frequency of the other (Kaplan-Hahn matching) or by matching the Rabi frequencies of the two systems (Hartmann-Hahn matching).24 A general review25 of the connection between concepts in quantum optics and nuclear magnetic resonance was given by Hahn.
  24. C. P. Slichter, Principles of Magnetic Resonance , Springer Series in Solid-State Sciences (Springer, New York, 1996).
  25. E. L. Hahn, "Concepts of NMR in quantum optics," Concepts Magn. Reson. 9, 69-81 (1997).
  26. W. Bell and A. Bloom, "Optically driven spin precession," Phys. Rev. Lett. 6, 280-281 (1961).
  27. W. Bell and A. Bloom, "Observation of forbidden resonances in optically driven spin systems," Phys. Rev. Lett. 6, 623-624 (1961).
  28. E. B. Aleksandrov, "Quantum beats of luminescence under modulated light excitation," Opt. Spectrosc. 14, 233-234 (1963).
  29. M. Auzinsh, "Nonlinear phase resonance of quantum beats in the dimer ground state," Opt. Spectrosc. (USSR) 68, 750-752 (1990).
  30. R. S. Ferber, A. I. Okunevich, O. A. Shmit, and M. Y. Tamanis, "Landé factor measurements for the 130Te2 electronic ground state," Chem. Phys. Lett. 90, 476-480 (1982).
  31. M. Auzinsh, K. Nasyrov, M. Tamanis, R. Ferber, and A. Shalagin, "Resonance of quantum beats in a system of magnetic sublevels of the electronic ground state of molecules," Sov. Phys. JETP 65, 891-897 (1987).
  32. M. P. Auzinsh, K. A. Nasyrov, M. Y. Tamanis, R. S. Ferber, and A. M. Shalagin, "Determination of the ground-state Landé factor for diatomic molecules by a beat-resonance method," Chem. Phys. Lett. 167, 129-136 (1990).
  33. J. P. Jacobs, W. M. Klipstein, S. K. Lamoreaux, B. R. Heckel, and E. N. Fortson, "Limit on the electric-dipole moment of 199Hg using synchronous optical pumping," Phys. Rev. A 52, 3521-3540 (1995).
  34. M. V. Romalis, W. C. Griffith, J. P. Jacobs, and E. N. Fortson, "New limit on the permanent electric dipole moment of 199Hg," Phys. Rev. Lett. 86, 2505-2508 (2001).
  35. M. V. Romalis, W. C. Griffith, J. P. Jacobs, and E. N. Fortson, "Art and Symmetry in Experimental Physics: Festschrift for Eugene D. Commins," in AIP Conference Proceedings, Vol. 596 , D. Budker, S. J. Freedman, and P. Bucksbaum, eds. (American Institute of Physics, Melville, N.Y., 2001), pp. 47-61.
  36. D. Budker, D. F. Kimball, V. V. Yashchuk, and M. Zolotorev, "Nonlinear magneto optical rotation with frequency-modulated light," Phys. Rev. A 65, 055403 (2002).
  37. V. V. Yashchuk, D. Budker, W. Gawlik, D. F. Kimball, Y. P. Malakyan, and S. M. Rochester, "Selective addressing of high-rank atomic polarization moments," Phys. Rev. Lett. 90, 253001 (2003).
  38. Y. P. Malakyan, S. M. Rochester, D. Budker, D. F. Kimball, and V. V. Yashchuk, "Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition," Phys. Rev. A 69, 013817 (2004).
  39. E. B. Aleksandrov, "Optical manifestation of interference of non-degenerate atomic states," Sov. Phys. Usp. 15, 436-451 (1972).
  40. D. Budker, D. F. Kimball, and V. V. Yashchuk, Nonlinear Magneto-Optic Atomic Magnetometry for the Earth Field Range , Technical Report LBNL PUB-5449, Lawrence Berkeley National Laboratory (1999).
  41. J. Dupont-Roc, "Determination of the three components of a weak magnetic field by optical methods," Rev. Phys. Appl. 5, 853-864 (1970).
  42. H. Failache, P. Valente, G. Ban, V. Lorent, and A. Lezama, "Inhibition of electromagnetically induced absorption due to excited state decoherence in Rb vapor," Phys. Rev. A 67, 043810 (2003).
  43. A. I. Okunevich, "Parametric relaxation resonance of optically oriented atoms in a transverse magnetic field," Zh. Eksp. Teor. Fiz. 66, 1578-1580 (1974).
  44. L. Novikov, "Optically excited parametric resonance," C. R. Seances Acad. Sci., Ser. B 278, 1063-1065 (1974).
  45. A. I. Okunevich, "Parametric relaxation resonance of optically oriented metastable 4He atoms in an effective magnetic field," Zh. Eksp. Teor. Fiz. 67, 881-889 (1974).
  46. E. B. Aleksandrov, M. V. Balabas, and V. A. Bonch-Bruevich, "Nutation caused by a change in relaxation rate," Pis'ma Zh. Eksp. Teor. Fiz. 45, 309-310 (1987).
  47. E. Arimondo, in Progress in Optics, Vol. XXXV , E. Wolf, ed. (Elsevier, New York, 1996), pp. 259-354.
  48. C. Andreeva, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, T. Karaulanov, C. Marinelli, E. Mariotti, and L. Moi, "Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry," Appl. Phys. B 76, 667-675 (2003).
  49. D. Suter, T. Marty, and H. Klepel, "Rotation properties of multipole moments in atomic sublevel spectroscopy," Opt. Lett. 18, 531-533 (1993).
  50. D. Suter and T. Marty, "Experimental observation of the rotation properties of atomic multipoles," J. Opt. Soc. Am. B 11, 242-252 (1994).
  51. J. D. Xu, G. Wäckerle, and M. Mehring, "Multiple-quantum spin coherence in the ground state of alkali atomic vapors," Phys. Rev. A 55, 206-213 (1997).
  52. J. D. Xu, G. Wäckerle, and M. Mehring, "Optical detection of spin multipole order in the ground state of alkali atoms," Z. Phys. D 42, 5-13 (1997).
  53. A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, "Enhancement of Kerr nonlinearity by multiphoton coherence," Opt. Lett. 28, 96-98 (2003).
  54. B. Lobodzin´ski and W. Gawlik, "Multipole moments and trap states in forward scattering of resonance light," Phys. Rev. A 54, 2238-52 (1996).
  55. B. Lobodzin´ski and W. Gawlik, "Role of trap states in forward scattering of resonance light," Phys. Scr. T70, 138-44 (1997).
  56. D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, "Sensitive magnetometry based on nonlinear magneto-optical rotation," Phys. Rev. A 62, 043403 (2000).
  57. C. Cohen-Tannoudji, J. DuPont-Roc, S. Haroche, and F. Laloë, "Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas," Phys. Rev. Lett. 22, 758-760 (1969).
  58. B. Cheron, H. Gilles, J. Hamel, O. Moreau, and E. Noel, "A new optical pumping scheme using a frequency modulated semi-conductor laser for 4He magnetometers," Opt. Commun. 115, 71-74 (1995).
  59. B. Cheron, H. Gilles, J. Hamel, O. Moreau, and E. Noel, "4He optical pumping with frequency modulated light," J. Phys. II 6, 175-185 (1996).
  60. H. Gilles, J. Hamel, and B. Cheron, "Laser pumped 4He magnetometer," Rev. Sci. Instrum. 72, 2253-2260 (2001).
  61. V. V. Yashchuk, J. Granwehr, D. F. Kimball, S. M. Rochester, A. Trabesinger, J. T. Urban, D. Budker, and A. Pines, "Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry" (2004), http://arxiv.org/abs/physics/0404090.
  62. M. P. Auzinsh, M. Y. Tamanis, and R. S. Ferber, "Observation of quantum beats in the kinetics of the thermalization of diatomic molecules in the electronic ground state," JETP Lett. 42, 160-163 (1985).
  63. M. Auzinsh, M. Tamanis, and R. Ferber, "Zeeman quantum beats after optical depopulation of the ground electronic state of diatomic molecules," Sov. Phys. JETP 63, 688-693 (1986).
  64. H. Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules , 2nd ed. (Academic, New York, 2004).
  65. M. Auzinsh and R. Ferber, "Observation of quantum-beat resonance between magnetic sublevels with DeltaM=4," JETP Lett. 39, 452-455 (1984).
  66. R. Wallenstein, J. A. Paisner, and A. L. Schawlow, "Observation of Zeeman quantum beats in molecular iodine," Phys. Rev. Lett. 32, 1333-1336 (1974).
  67. B. C. Regan, D. Commins, C. J. Schmidt, and D. DeMille, "New limit on the electron electric dipole moment," Phys. Rev. Lett. 88, 071805 (2002).
  68. D. DeMille, F. Bay, S. Bickman, B. Kawall, L. Hunter, J. Krause, D., S. Maxwell, and K. Ulmer, "Search for the electric dipole moment of the electron using metastable PbO," in AIP Conference Proceedings, D. Budker, P. Bucksbaum, and S. J. Freedman, eds. (American Institute of Physics, Melville, N.Y., 2001), Vol. 596, pp. 72-83.
  69. G. Herzberg, Spectra of Diatomic Molecules (Krieger, Malabar, Fla., 1989).
  70. D. Kawall, F. Bay, S. Bickman, Y. Jiang, and D. DeMille, "Precision Zeeman-Stark spectroscopy of the metastable a(1)[3Sigma+] state of PbO," Phys. Rev. Lett. 92, 133007 (2004).
  71. S. Rochester, C. J. Bowers, D. Budker, D. DeMille, and M. Zolotorev, "Measurement of lifetimes and tensor polarizabilities of odd-parity states of atomic samarium," Phys. Rev. A 59, 3480-3494 (1999).
  72. D. Budker, D. Demille, E. D. Commins, and M. S. Zolotorev, "Experimental investigation of excited states in atomic dysprosium," Phys. Rev. A 50, 132-143 (1994).
  73. A. T. Nguyen, D. Budker, D. DeMille, and M. Zolotorev, "Search for parity nonconservation in atomic dysprosium," Phys. Rev. A 56, 3453-3463 (1997).
  74. E. B. Aleksandrov and V. S. Zapasskii, "Magnetic resonance in the Faraday rotation noise spectrum," Zh. Eksp. Teor. Fiz. 81, 132-138 (1981).
  75. M. Martinelli, P. Valente, H. Failache, D. Felinto, L. S. Cruz, P. Nussenzweig, and A. Lezama, "Noise spectroscopy of non-linear magneto-optical resonances in Rb vapor," Phys. Rev. A 69, 043809, (2004).
  76. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols (World Scientific, Singapore, 1988).
  77. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).
  78. M. Ducloy, "Non-linear effects in optical pumping with lasers. I. General theory of the classical limit for levels of large angular momenta," J. Phys. B 9, 357-381 (1976).
  79. When the excitation light has a spectral profile broader than the homogeneous absorption linewidth, calculations can also be simplified by using rate equations for the Zeeman coherences.8081 It has been demonstrated that in many cases these rate equations give very good agreement between the model and experimental results. Recently, a detailed analysis82 of the application limits for the rate equations for Zeeman coherences for nonlinear magneto-optical effects was carried out.
  80. C. Cohen-Tannoudji, "Theorie quantique du cycle de pompage optique. Verification experimentale des noveaux effets prevus (1-re partie)," Ann. Phys. (Paris) 7, 423-461 (1962).
  81. C. Cohen-Tannoudji, "Theorie quantique du cycle de pompage optique. Verification experimentale des noveaux effets prevus (2-e partie)," Ann. Phys. (Paris) 7, 469-504 (1962).
  82. K. Blushs and M. P. Auzinsh, "Validity of rate equations for Zeeman coherences for analysis of nonlinear interaction of atoms with laser radiation," Phys. Rev. A 69, 063806 (2004).
  83. K. A. Nasyrov and A. M. Shalagin, "Interaction between intense radiation and atoms or molecules experiencing classical rotary motion," Zh. Eksp. Teor. Fiz. 81, 6649-6663 (1981).
  84. K. A. Nasyrov, "Wigner representation of rotational motion," J. Phys. A 32, 6663-6678 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited