OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 88–95

Fluorescence of rubidium in a submicrometer vapor cell: spectral resolution of atomic transitions between Zeeman sublevels in a moderate magnetic field

D. Sarkisyan, A. Papoyan, T. Varzhapetyan, K. Blushs, and M. Auzinsh  »View Author Affiliations


JOSA B, Vol. 22, Issue 1, pp. 88-95 (2005)
http://dx.doi.org/10.1364/JOSAB.22.000088


View Full Text Article

Acrobat PDF (507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is experimentally demonstrated that use of an extremely thin cell (ETC) with the thickness of a Rb atomic vapor column of ∼400 nm allows one to resolve a large number of individual transitions between Zeeman sublevels of the D1 line of 87Rb and 85Rb in the sub-Doppler fluorescence excitation spectra in an external magnetic field of ∼200 G. It is revealed that due to the peculiarities of the Zeeman effect for different hyperfine levels of Rb, all allowed transitions between magnetic sublevels can be clearly resolved for 87RbF_g = 1 --> F_e = 1, 2 and F_g = 2 --> F_e = 1, 2 fluorescence excitation. Also, relatively good spectral resolution can be achieved for 85RbF_g = 2 --> F_e = 2, 3 fluorescence excitation. Some partial resolution of transitions between magnetic sublevels is achieved for 85RbF_g = 3 --> F_e = 2, 3 fluorescence excitation. The spectral resolution of individual transitions allows one to easily observe both linear and nonlinear Zeeman effects in the fluorescence excitation spectra obtained with the help of the ETC. In the fluorescence spectra of a cell of usual length there is no evidence of a spectral resolution of individual transitions at B ∼ 200 G. A simple magnetometer based on ETC with Rb with a submicrometer spatial resolution is described.

© 2005 Optical Society of America

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(020.3690) Atomic and molecular physics : Line shapes and shifts
(020.7490) Atomic and molecular physics : Zeeman effect
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.3700) Spectroscopy : Linewidth
(300.6210) Spectroscopy : Spectroscopy, atomic

Citation
D. Sarkisyan, A. Papoyan, T. Varzhapetyan, K. Blushs, and M. Auzinsh, "Fluorescence of rubidium in a submicrometer vapor cell: spectral resolution of atomic transitions between Zeeman sublevels in a moderate magnetic field," J. Opt. Soc. Am. B 22, 88-95 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-1-88

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited