## Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review

JOSA B, Vol. 22, Issue 1, pp. 96-118 (2005)

http://dx.doi.org/10.1364/JOSAB.22.000096

Acrobat PDF (1748 KB)

### Abstract

Second-harmonic generation (SHG) in magnetically ordered crystals is reviewed. The symmetry of such crystals is determined by the arrangement of both the charges and the spins, so their contributions to the crystallographic and the magnetic structures, respectively, must be distinguished. Magnetic SHG is introduced as a probe for magnetic structures and sublattice interactions. The specific degrees of optical experiments - including spectral, spatial, and temporal resolution - lead to the observation of novel physical effects that cannot be revealed by other techniques of probing magnetism. These include local or hidden phase transitions, interacting magnetized and polarized sublattices and domain walls, and magnetic interfaces. SHG in various centrosymmetric and noncentrosymmetric crystal classes of antiferromagnetic oxides such as Cr2O3, hexagonal RMnO3(R=Sc,Y,In,Ho-Lu), magnetic garnet films, CuB2O4, CoO, and NiO, is discussed.

© 2005 Optical Society of America

**OCIS Codes**

(160.3820) Materials : Magneto-optical materials

(190.4180) Nonlinear optics : Multiphoton processes

(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

**Citation**

Manfred Fiebig, Victor V. Pavlov, and Roman V. Pisarev, "Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review," J. Opt. Soc. Am. B **22**, 96-118 (2005)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-1-96

Sort: Year | Journal | Reset

### References

- P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of optical harmonics," Phys. Rev. Lett. 7, 118-119 (1961).
- S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics (Vserossiisky Institut Nauchnoi i Tekhnicheskoi Informatsii, Moscow, 1964) (in Russian).
- N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).
- S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics and Spectroscopy of the Light Diffusion (Nauka, Moscow, 1981) (in Russian).
- D. N. Klyshko, Photons and Nonlinear Optics (Nauka, Moscow, 1980) (in Russian).
- Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
- R. W. Boyd, Nonlinear Optics (Academic, London, 1992).
- P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, UK, 1990).
- K. H. Bennemann, ed., Nonlinear Optics in Metals (Clarendon, Oxford, UK, 1998).
- P. S. Pershan, "Nonlinear optical properties of solids: energy considerations," Phys. Rev. 130, 919-929 (1963).
- E. Adler, "Nonlinear optical frequency polarization in a dielectric," Phys. Rev. 134, A728-A733 (1964).
- J. Lajzerowicz and M. Vallade, "Génération du second harmonique dans les substances magnétiques ordonnées," C. R. Seances Acad. Sci., Ser. B 264, 1819-1821 (1967).
- S. Kielich and R. Zawodny, "Optical nonlinear phenomena in magnetized crystals and isotropic bodies," Acta Phys. Pol. A 43, 579-603 (1973).
- S. Kielich and R. Zawodny, "On new nonlinear magneto-optical phenomena in crystals and liquids," Opt. Acta 20, 867-877 (1973).
- N. N. Akhmediev, S. B. Borisov, A. K. Zvezdin, I. L. Lyubchanski, and Yu. V. Melikhov, "Nonlinear optical susceptibility of magnetically ordered crystals," Sov. Phys. Solid State 27, 650-652 (1985).
- S. B. Borisov and I. L. Lyubchanskii, "Microscopic theory of the nonlinear optical susceptibility of magnetics," Opt. Spectrosc. 61, 801-804 (1986).
- S. S. Girgel and T. V. Demidova, "Frequency conversion of electromagnetic waves in crystals with a centrosymmetric paramagnetic phase," Opt. Spectrosc. 62, 63-65 (1987).
- R.-P. Pan and Y. R. Shen, "Optical second harmonic generation as a probe for surface magnetization," Chin. J. Phys. (Taipei) 25, 175-177 (1987).
- R.-P. Pan, H. D. Wei, and Y. R. Shen, "Optical second-harmonic generation from magnetized surfaces," Phys. Rev. B 39, 1229-1234 (1989).
- W. Hübner and K. H. Bennemann, "Nonlinear magneto-optical Kerr effect on a nickel surface," Phys. Rev. B 40, 5973-5979 (1989).
- J. Kocinski, "The nonlinear optical susceptibility tensor xi_ijk in a diperiodic magnetic layer," J. Magn. Magn. Mater. 104-107, 1787-1788 (1992).
- R. Zawodny, "Nonlinear magneto-optics of magnetically ordered crystals," Adv. Chem. Phys. 85, 307-374 (1993).
- A. K. Zvesdin, "Non-linear surface Kerr effect and SHG in magnets," Physica A 241, 444-449 (1997).
- A. K. Zvezdin and N. F. Kubrakov, "Nonlinear magneto-optical Kerr effects," JETP 89, 77-85 (1999).
- V. I. Belotelov, A. P. Pyatakov, S. A. Eremin, G. G. Musaev, and A. K. Zvezdin, "New nonlinear intensity Kerr effect in the polar geometry," Phys. Solid State 42, 1873-1880 (2000).
- V. I. Belotelov, A. P. Pyatakov, G. G. Musaev, S. A. Eremin, and A. K. Zvezdin, "Nonlinear intensity-related magneto-optical Kerr effects in the planar geometry," Opt. Spectrosc. 91, 626-633 (2001).
- A. M. Agaltsov, V. S. Gorelik, A. K. Zvezdin, V. A. Murashov, and D. N. Rakov, "Temperature dependence of the second harmonic generation in ferroelectric-magnetic bismuth ferrite," Sov. Phys. Short Commun. 5, 37-39 (1989).
- V. A. Murashov, D. N. Rakov, V. M. Ionov, I. S. Dubenko, Y. V. Titov, and V. S. Gorelik, "Magnetoelectric (Bi,Ln)FeO3 compounds: crystal growth, structure and properties," Ferroelectrics 162, 11-21 (1994).
- R. V. Pisarev, "Crystal optics of magnetoelectrics," Ferroelectrics 162, 191-209 (1994).
- O. A. Aktsipetrov, O. V. Braginskii, and D. A. Esikov, "Nonlinear optics of gyrotropyc media: second harmonic generation in rare-earth iron garnets," Sov. J. Quantum Electron. 20, 259-263 (1990).
- J. Reif, J. C. Zink, C.-M. Schneider, and J. Kirschner, "Effects of surface magnetism on optical second harmonic generation," Phys. Rev. Lett. 67, 2878-2881 (1991).
- J. Reif, C. Rau, and E. Matthias, "Influence of magnetism on second harmonic generation," Phys. Rev. Lett. 71, 1931-1934 (1993).
- E. Matthias and F. Träger, eds., Proceedings of the Topical Conference: Nonlinear Optics at Interfaces (NOPTI 1998) , Appl. Phys. B 68 (1999).
- F. Träger, ed., Proceedings of the Topical Conference: Nonlinear Optics at Interfaces (NOPTI 2001) , Appl. Phys. B 74 (2002).
- Th. Rasing, "Nonlinear magneto-optics," J. Magn. Magn. Mater. 175, 35-50 (1997).
- O. A. Aktsipetrov, "Nonlinear magneto-optics in magnetic nanoparticles," Colloids Surf., A 202, 165-173 (2002).
- A. Kirilyuk, "Nonlinear optics in application to magnetic surfaces and thin films," J. Phys. D 35, R189-R207 (2002).
- A. Kirilyuk, V. Kirilyuk, Th. Rasing, V. V. Pavlov, and R. V. Pisarev, "Domain and domain wall images by second harmonic generation," J. Magn. Soc. Jpn. 20(S1), 361-364 (1996).
- A. Kirilyuk, V. Kirilyuk, and Th. Rasing, "A combined nonlinear and linear magneto-optical microscopy," Appl. Phys. Lett. 70, 2306-2308 (1997).
- I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, "Near-field second-harmonic imaging of ferromagnetic and ferroelectric materials," Opt. Lett. 22, 1592-1594 (1997).
- D. Wegner, U. Conrad, J. Güdde, G. Meyer, T. Crecelius, and A. Bauer, "In-plane magnetization of garnet films imaged by proximal probe nonlinear magneto-optical microscopy," J. Appl. Phys. 88, 2166-2168 (2000).
- V. V. Pavlov, J. Ferré, P. Meyer, G. Tessier, P. Georges, A. Brun, P. Beauvillain, and V. Mathet, "Linear and non-linear magneto-optical studies of Pt/Co/Pt thin films," J. Phys.: Condens. Matter 13, 9867-9878 (2001).
- J. Hohlfeld, E. Matthias, R. Knorren, and K. H. Bennemann, "Nonequilibrium magnetization dynamics of nickel," Phys. Rev. Lett. 78, 4861-4864 (1997).
- B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, "Ultrafast magneto-optics in nickel: magnetism or optics?" Phys. Rev. Lett. 85, 844-847 (2000).
- H. Regensburger, R. Vollmer, and J. Kirschner, "Time-resolved magnetization-induced second-harmonic generation from the Ni(110) surface," Phys. Rev. B 61, 14716-14722 (2000).
- M. Fiebig, D. Fröhlich, B. B. Krichevtsov, and R. V. Pisarev, "Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3," Phys. Rev. Lett. 73, 2127-2130 (1994).
- A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, Bristol, 1997).
- S. Sugano and N. Kojima, eds., Magneto-Optics (Springer-Verlag, Berlin, 2000).
- T. H. O'Dell, The Electrodynamics of Magnetoelectric Media (North-Holland, Amsterdam, 1970).
- R. R. Birss, Symmetry and Magnetism (North-Holland, Amsterdam, 1966).
- M. Trzeciecki and W. Hübner, "Time-reversal symmetry in nonlinear optics," Phys. Rev. B 62, 13888-13891 (2000).
- D. Sa, R. Valentí´, and C. Gros, "A generalized Ginzburg-Landau approach to second harmonic generation," Eur. Phys. J. B 14, 301-305 (2000).
- C. H. Lee, R. K. Chang, and N. Bloembergen, "Nonlinear electroreflectance in silicon and silver," Phys. Rev. Lett. 18, 167-170 (1967).
- M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
- R. W. Terhune, P. D. Maker, and C. M. Savage, "Optical harmonic generation in calcite," Phys. Rev. Lett. 8, 404-406 (1962).
- R. V. Pisarev, I. Sänger, G. A. Petrakovskii, and M. Fiebig, "Magnetic-field induced second harmonic generation in CuB2O4," Phys. Rev. Lett. 93, 037204/1-4 (2004).
- T. Suzuki, V. Venkataramanan, and M. Aono, "Magnetic-field-induced second-harmonic generation on Si(111)-7×7," Jpn. J. Appl. Phys., Part 1 40, L1119-L1122 (2001).
- V. Venkataramanan, K. Noguchi, M. Aono, and T. Suzuki, "A sensitive detection method for magnetization-induced second-harmonic generation under an externally applied field," Appl. Phys. B: Photophys. Laser Chem. 74, 683-689 (2002).
- J. Ferré, "Linear and non-linear magneto-optical effects," in Magnetism and Synchrotron Radiation , E. Beaurepaire, F. Scheurer, G. Krill, and J. P. Kappler, eds. (Springer-Verlag, Heidelberg, 2001), pp. 316-335.
- D. N. Astrov, "The magnetoelectric effect in antiferromagnetics," Sov. Phys. JETP 11, 708-709 (1960).
- V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, "Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films," Phys. Rev. Lett. 78, 2004-2007 (1997).
- Y. Ogawa, Y. Kaneko, J. P. He, X. Z. Yu, T. Arima, and Y. Tokura, "Magnetization-induced second harmonic generation in a polar ferromagnet," Phys. Rev. Lett. 92, 047401/1-4 (2004).
- B. B. Krichevtsov, V. V. Pavlov, and R. V. Pisarev, "Giant linear magnetoelectric effect in garnet ferrite films," JETP Lett. 49, 535-539 (1989).
- B. B. Krichevtsov, V. V. Pavlov, and R. V. Pisarev, "Linear effects of an electric field on the magnetization processes in iron garnet films," Phys. Solid State 31, 1142-1148 (1989).
- B. B. Krichevtsov, V. V. Pavlov, R. V. Pisarev, and A. G. Selitsky, "Linear magnetoelectric effect in magnetic garnet thin films," Ferroelectrics 161, 65-71 (1994).
- R. V. Pisarev, B. B. Krichevtsov, V. N. Gridnev, V. P. Klin, D. Fröhlich, and Ch. Pahlke-Lerch, "Optical second-harmonic generation in magnetic garnet thin films," J. Phys.: Condens. Matter 5, 8621-8628 (1993).
- G. Petrocelli, S. Martellucci, and M. Richetta, "Bismuth induced enhancement of the second-harmonic generation efficiency in bismuth-substituted yttrium iron garnet films," Appl. Phys. Lett. 63, 3402-3404 (1993).
- V. N. Gridnev, V. V. Pavlov, and R. V. Pisarev, "Second harmonic generation in anisotropic magnetic films," Phys. Rev. B 63, 184407/1-11 (2001).
- D. Fröhlich, St. Leute, V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Reasing, "Nonlinear optical spectroscopy of the two-order-parameter compound YMnO3," Phys. Rev. Lett. 81, 3239-3242 (1998).
- M. Fiebig, D. Fröhlich, K. Kohn, St. Leute, Th. Lottermoser, V. V. Pavlov, and R. V. Pisarev, "Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation," Phys. Rev. Lett. 84, 5620-5623 (2000).
- C. Degenhardt, M. Fiebig, D. Fröhlich, Th. Lottermoser, and R. V. Pisarev, "Nonlinear optical spectroscopy of electronic transitions in hexagonal manganites," Appl. Phys. B: Lasers Opt. 73, 139-144 (2001).
- M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, "Observation of coupled magnetic and electric domains," Nature (London) 419, 818-820 (2002).
- R. Pauthenet and C. Veyret, "Les propriétés magnétostatiques des manganites de terres rares," J. Phys. (Paris) 31, 65 (1970). Curie temperatures were incorrectly listed owing to a misprint.
- N. Iwata and K. Kohn, "Dielectric anomalies at magnetic transitions of hexagonal rare earth manganese oxides RMnO3," J. Phys. Soc. Jpn. 67, 3318-3319 (1998). The results for ErMnO3 and HoMnO3 have to be exchanged.
- H. Sugie, N. Iwata, and K. Kohn, "Magnetic ordering of rare earth ions and magnetic-electric interaction of hexagonal RMnO3(R=Ho, Er, Yb or Lu)," J. Phys. Soc. Jpn. 71, 1558-1564 (2002).
- M. Fiebig, Th. Lottermoser, and R. V. Pisarev, "Spin-rotation phenomena and magnetic phase diagrams of hexagonal RMnO3," J. Appl. Phys. 93, 8194-8196 (2003).
- A. Muñoz, J. A. Alonso, M. J. Martí´nez-Lope, M. T. Casáis, J. L. Martí´nez, and M. T. Fernández-Dí´az, "Evolution of the magnetic structure of hexagonal HoMnO3 from neutron powder diffraction data," Chem. Mater. 13, 1497-1505 (2001).
- Th. Lonkai, D. Hohlwein, J. Ihringer, and W. Prandl, "The magnetic structures of YMnO3−delta and HoMnO3," Appl. Phys. A: Mater. Sci. Process. 74, S843-S845 (2002).
- S. Kielich and R. Zawodny, "DC magnetic field induced second harmonic generation of laser beam," Opt. Commun. 4, 132 (1971).
- J. E. Sipe, D. J. Moss, and H. M. van Driel, "Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals," Phys. Rev. B 35, 1129-1141 (1987).
- J. E. Sipe, V. Mizrahi, and G. I. Stegeman, "Fundamental difficulty in the use of second-harmonic generation as a strictly surface probe," Phys. Rev. B 35, 9091-9094 (1987).
- P. Guyot-Sionnest and Y. R. Shen, "Bulk contribution in surface second-harmonic generation," Phys. Rev. B 38, 7985-7989 (1988).
- J. J. Maki, M. Kauranen, and A. Persoons, "Surface second-harmonic generation from chiral materials," Phys. Rev. B 51, 1425-1434 (1995).
- H. W. K. Tom, T. F. Heinz, and Y. R. Shen, "Second-harmonic reflection from silicon surfaces and its relation to structural symmetry," Phys. Rev. Lett. 51, 1983-1986 (1983).
- E. W. Meijer, E. E. Havinga, and G. L. J. A. Rikken, "Second-harmonic generation in centrosymmetric crystals of chiral molecules," Phys. Rev. Lett. 65, 37-39 (1990).
- B. Koopmans, A.-M. Janner, H. T. Jonkman, G. A. Sawatzky, and F. van der Woude, "Strong bulk magnetic dipole induced second-harmonic generation from C60," Phys. Rev. Lett. 71, 3569-3572 (1993).
- Th. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, "Linearly polarized probes of surface chirality," J. Chem. Phys. 103, 8296-8298 (1995).
- A. V. Balakin, N. I. Koroteev, A. V. Pakulev, A. P. Shkurinov, D. Boucher, P. Masselin, and E. Fertein, "Polarization characteristics of the 'forbidden' second optical harmonic of fem tosecond laser pulses in a bacteriorhodopsin solution," JETP 85, 52-60 (1997).
- M. Fiebig, D. Fröhlich, and R. V. Pisarev, "Nonlinear spec-troscopy of antiferromagnetic Cr2O3," J. Appl. Phys. 81, 4875-4877 (1997).
- V. N. Muthukumar, R. Valentí´, and C. Gros, "Microscopic model of nonreciprocal optical effects in Cr2O3," Phys. Rev. Lett. 75, 2766-2769 (1995).
- V. N. Muthukumar, R. Valentí´, and C. Gros, "Theory of nonreciprocal optical effects in antiferromagnets: The case of Cr2O3," Phys. Rev. B 54, 433-440 (1996).
- M. Muto, Yu. Tanabe, T. Iizuka-Sakano, and E. Hanamura, "Magnetoelectric and second-harmonic spectra in antiferromagnetic Cr2O3," Phys. Rev. B 57, 9586-9607 (1998).
- Y. Tanabe, M. Muto, M. Fiebig, and E. Hanamura, "Interference of second harmonics due to electric and magnetic dipoles in antiferromagnetic Cr2O3," Phys. Rev. B 58, 8654-8666 (1998).
- M. Fiebig, D. Fröhlich, Th. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, "Second harmonic generation in the centrosymmetric antiferromagnet NiO," Phys. Rev. Lett. 87, 137202/1-4 (2001).
- M. Fiebig, Th. Lottermoser, V. V. Pavlov, and R. V. Pisarev, "Magnetic second harmonic generation in centrosymmetric CoO, NiO, and KNiF3," J. Appl. Phys. 93, 6900-6902 (2003).
- M. Fiebig, D. Fröhlich, Th. Lottermoser, V. V. Pavlov, R. V. Pisarev, and J.-H. Weber, "Optical second harmonic generation in centrosymmetric antiferromagnetic NiO," in XI Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, Proc. SPIE 4766, 238-247 (2002).
- M. Fiebig, D. Fröhlich, Th. Lottermoser, V. V. Pavlov, R. V. Pisarev, and H.-J. Weber, "Second harmonic generation of magnetic-dipole type in the centrosymmetric antiferromagnets NiO and KNiF3," J. Magn. Magn. Mater. 258-259, 110-113 (2003).
- St. Leute, Th. Lottermoser, and D. Fröhlich, "Nonlinear spatially resolved phase spectroscopy," Opt. Lett. 24, 1520-1522 (1999).
- M. Fiebig, D. Fröhlich, T. Lottermoser, and S. Kallenbach, "Phase-resolved second-harmonic imaging with non-ideal laser sources," Opt. Lett. 29, 41-43 (2004).
- R. E. Newnham and Y. M. de Haan, "Refinement of the alpha-Al2O3,Ti2O3,V2O3, and Cr2O3 structure," Z. Kristallogr. 117, 235-237 (1962).
- B. N. Brockhouse, "Antiferromagnetic structure in Cr2O3," J. Chem. Phys. 21, 961-962 (1953).
- Y. Tanabe and S. Sugano, "On the absorption spectra of complex ions," J. Phys. Soc. Jpn. 9, 753-766 (1954).
- Y. Tanabe and K. Aoyagi, "Excitons in magnetic insulators," in Excitons , E. I. Rashba and M. D. Sturge, eds. (North-Holland, Amsterdam, 1982), pp. 603-664.
- J. P. van der Ziel, "Davydov splitting of the 2E lines in antiferromagnetic Cr2O3," Phys. Rev. Lett. 18, 237239 (1967).
- D. S. McClure, "Comparison of the crystal fields and optical spectra of Cr2O3 and ruby," J. Chem. Phys. 38, 2289-2294 (1963).
- J. W. Allen, R. M. Macfarlane, and R. L. White, "Magnetic Davydov splitting in the optical absorption spectrum of Cr2O3," Phys. Rev. 179, 523-541 (1969).
- R. M. Macfarlane and J. W. Allen, "Exciton bands in antiferromagnetic Cr2O3," Phys. Rev. B 4, 3054-3067 (1971).
- S. I. Shablaev, I. P. Areshev, and R. V. Pisarev, "Resonant two-photon absorption in the Cr2O3 antiferromagnet," Phys. Solid State 42, 1868-1872 (2000).
- I. E. Dzyaloshinskii, "The magnetoelectric effect in antiferromagnetic materials," Sov. Phys. JETP 10, 628-629 (1960).
- L. M. Corliss and J. M. Hastings, "Magnetic structure studies at Brookhaven National Laboratory," J. Phys. (Paris) 25, 557-562 (1964).
- M. Fiebig, D. Fröhlich, and H.-J. Thiele, "Determination of spin direction in the spin-flop phase of Cr2O3," Phys. Rev. B 54, 12681-12684 (1996).
- J. Ohtani and K. Kohn, "Magnetoelectric effect and spin direction in a spin-flopped Cr2O3 single crystal," J. Phys. Soc. Jpn. 53, 3744-3746 (1984).
- H. Wiegelmann, A. G. M. Jansen, P. Wyder, J. P. Rivera, and H. Schmid, "Magnetoelectric effect of Cr2O3 in strong static magnetic fields," Ferroelectrics 162, 141-146 (1994).
- Y. F. Popov, Z. A. Kazei, and A. M. Kadomtseva, "Linear magnetoelectric effect in Cr2O3 in strong magnetic fields," JETP Lett. 55, 234-238 (1992).
- D. V. Belov, G. P. Vorob'ev, A. M. Kadomtseva, and Y. F. Popov, "Magnetoelectric effect in the spin-flop-phase of Cr2O3 and the problem of determining the magnetic structure," JETP Lett. 58, 579-584 (1993).
- J. M. D. Coey, M. Viret, and S. von Molnar, "Mixed-valence manganites," Adv. Phys. 48, 167-293 (1999).
- H. L. Yakel, W. C. Koehler, E. F. Bertraut, and E. F. Forrat, "On crystal structure of manganese (111) trioxides of heavy lanthanides and yttrium," Acta Crystallogr. 16, 957-963 (1963).
- H. W. Xu, J. Iwasaki, T. Shimizu, H. Sato, and N. Kamegashira, "Structure, magnetic-susceptibility and heat-capacity of ScMnO3," J. Alloys Compd. 221, 274-279 (1995).
- M. Bieringer and J. E. Greedan, "Magnetic structure and spin reorientation transition in ScMnO3," J. Solid State Chem. 143, 132-139 (1999).
- A. Muñoz, J. A. Alonso, M. Y. Martí´nez-Lope, M. T. Casáis, J. L. Martí´nez, and M. T. Fernández-Dí´az, "Magnetic structure of hexagonal RMnO3(R=Y, Sc): thermal evolution from neutron powder diffraction data," Phys. Rev. B 62, 9498-9510 (2000).
- M. N. Iliev, H. G. Lee, V. N. Popov, M. V. Abrashev, A. Hamed, R. L. Meng, and C. W. Chu, "Raman- and infrared-active phonons in hexagonal YMnO3: experiment and lattice-dynamical calculations," Phys. Rev. B 56, 2488-2494 (1997).
- S. C. Abrahams, "Ferroelectricity and structure in the YMnO3 family," Acta Crystallogr. 57, 485-490 (2001).
- K. Lukaszewicz and J. Karut-Kalicinska, "X-ray investigations of the crystal structure and phase transitions of YMnO3," Ferroelectrics 7, 81-82 (1974).
- Th. Lonkai, U. Amman, J. Ihringer, D. G. Tomuta, R. W. A. Hendrikx, D. M. Többens, and J. A. Mydosh, "Development of the high-temperature phase of hexagonal manganites," Phys. Rev. B 69, 134108/1-10 (2004).
- B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, "Origin of ferroelectricity in magnetoelectric YMnO3," Nature Mater. 3, 164-170 (2004).
- E. F. Bertaut, M. Mercier, and R. Pauthenet, "Structure magnétique de MnYO3," Phys. Lett. 5, 27-29 (1963).
- W. C. Koehler, H. L. Yakel, E. O. Wollan, and J. W. Cable, "The magnetic structure of rear-earth manganites," in Proceedings of the 4th Conference on Rare-Earth Research (Gordon & Breach, New York, 1965), p. 63-75.
- Y. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of Magnetic Materials (Plenum, New York, 1991).
- Th. Lottermoser, Th. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, "Magnetic phase control by an electric field," Nature (London) 430, 541-544 (2004).
- K. Kritayakirana, P. Berger, and R. V. Jones, "Optical spectra of ferroelectric-antiferromagnetic rare earth manganates," Opt. Commun. 1, 95-98 (1969).
- G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, New York, 1968).
- W.-C. Yi, S.-I. Kwun, and J.-G. Yoon, "Study on the electronic structure of hexagonal and orthorhombic YMnO3," J. Phys. Soc. Jpn. 69, 2706-2707 (2000).
- M. Takahashi and J. Igarashi, "Local approach to elec tronic excitations in MnO, FeO, CoO, and NiO," Phys. Rev. B 54, 13566-13574 (1996).
- A. V. Kimel, R. V. Pisarev, F. Bentivegna, and Th. Rasing, "Time-resolved nonlinear optical spectroscopy of Mn3+ ions in rare-earth hexagonal manganites RMnO3(R= Sc, Y, Er)," Phys. Rev. B 64, 201103/1-4 (2001).
- A. B. Souchkov, J. R. Simpson, M. Quijada, H. Ishibashi, N. Hur, J. S. Ahn, S. W. Cheong, A. J. Millis, and H. D. Drewl, "Exchange interaction effects on the optical properties of LuMnO3," Phys. Rev. Lett. 91, 027203/1-4 (2003).
- A. M. Kalashnikova and R. V. Pisarev, "Electronic structure of hexagonal rare-earth manganites RMnO3," JETP Lett. 78, 143-147 (2003).
- R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
- J. E. Medvedeva, V. I. Anisimov, M. A. Korotin, O. N. Mryasov, and A. J. Freeman, "The effect of Coulomb correlation and magnetic ordering on the electronic structure of two hexagonal phases of ferroelectromagnetic YMnO3," J. Phys.: Condens. Matter 12, 4947-4958 (2000).
- M. Qian, J. Dong, and Q. Zheng, "Electronic structure of the ferroelectromagnet YMnO3," Phys. Lett. A 270, 96-101 (2000).
- G. M. Nedlin, "Possible ordered magnetic structures of YMnO3-type crystals," Sov. Phys. Solid State 6, 2156-2161 (1965).
- W. Sikora and V. N. Syromyatnikov, "Symmetry analysis of magnetic-structure in hexagonal manganites ErMnO3,HoMnO3,LuMnO3,ScMnO3,TmMnO3,YMnO3," J. Magn. Magn. Mater. 60, 199-203 (1986).
- X. Wan, J. Dong, M. Quian, and W. Zhang, "Nonlinear optical properties of perovskite YMnO3 studied by real-space recursion method," Phys. Rev. B 61, 10664-10669 (2000).
- T. Iizuka-Sakano, E. Nakamura, and Y. Tanabe, "Second-harmonic-generation spectra of the hexagonal manganites RMnO3," J. Phys.: Condens. Matter 13, 3031-3055 (2001).
- M. Fiebig, C. Degenhardt, and R. V. Pisarev, "Interaction of frustrated magnetic sublattices in ErMnO3," Phys. Rev. Lett. 88, 027203/1-4 (2002).
- A. V. Goltsev, R. V. Pisarev, Th. Lottermoser, and M. Fiebig, "Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3," Phys. Rev. Lett. 90, 177204/1-4 (2003).
- M. Fiebig, D. Fröhlich, S. Leute, and R. V. Pisarev, "Second harmonic spectroscopy and control of domain size in antiferromagnetic YMnO3," J. Appl. Phys. 83, 6560-6562 (1998).
- A. Paoletti, ed., Physics of Magnetic Garnets (North-Holland, Amsterdam, 1978).
- G. Winkler, Magnetic Garnets (Vieweg, Braunschweig, 1981).
- A. Paoletti, ed., "Magnetic garnet films," special issue, Thin Solid Films 114 (1984).
- H. P. J. Wijn, ed., Magnetic Properties of Nonmetallic Inorganic Compounds Based on Transition Elements , Vol 27/e of Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group III (Springer-Verlag, Berlin, 1991).
- O. A. Aktsipetrov, V. A. Aleshkevich, A. V. Melnikov, T. V. Misuryaev, T. V. Murzina, and V. V. Randoshkin, "Magnetic field induced effects in optical second harmonic generation from iron garnet films," J. Magn. Magn. Mater. 165, 421-423 (1997).
- D. L. Wood and J. P. Remeika, "Effect of impurities on optical properties of yttriom iron garnet," J. Appl. Phys. 38, 1038-1045 (1967).
- G. B. Scott and J. L. Page, "Absorption spectra of Y3Fe5O12 and Y3Ga5O12 - Fe3+ to 5.5 eV," Phys. Status Solidi B 79, 203-213 (1977).
- F. J. Kahn, P. S. Pershan, and J. P. Remeika, "Ultraviolet magneto-optical properties of single-crystal orthoferrites, garnets, and other ferric oxide compounds," Phys. Rev. 186, 891-918 (1969).
- J. P. van der Ziel, J. F. Dillon, Jr., and J. P. Remeika, "Excitons, spin-wave sidebands, and exchange interactions in yttrium iron garnet," AIP Conf. Proc. 5, 254-258 (1971).
- A. I. Galuza, V. V. Eremenko, and A. P. Kirichenko, "Optical properties of yttrium-ferrite garnet," Sov. Phys. Solid State 15, 407 (1973).
- K. W. Blazey, "Wavelength-modulated spectra of some Fe3+ oxides," J. Appl. Phys. 45, 2273-2280 (1974).
- S. H. Wemple, S. L. Blank, J. A. Seman, and W. A. Biolsi, "Optical properties of epitaxial iron garnet thin films," Phys. Rev. B 9, 2134-2144 (1974).
- G. B. Scott, D. E. Lacklison, and J. L. Page, "Absorption spectra of Y3Fe5O12 (YIG) and Y3Ga5O12:Fe3+," Phys. Rev. B 10, 971-986 (1974).
- B. B. Krichevtsov, O. Ochilov, and R. V. Pisarev, "Sublattice anisotropy of the magnetic linear dichroism of yttrium-iron garnet Y3Fe5O12," Phys. Solid State 25, 1380-1385 (1983).
- T. K. Vien, J. L. Dormann, and H. Le Gall, "Crystal-field splitting in octahedral and tetrahedral symmetry for Fe3+ ions in Y3Fe5O12," Phys. Status Solidi 71, 731-739 (1975).
- A. S. Moskvin, A. V. Zenkov, E. I. Yuryeva, and V. A. Gubanov, "Origin of the magneto-optical properties of iron garnets," Physica B 168, 187-196 (1991).
- V. V. Alekseev, V. V. Druzhinin, and R. V. Pisarev, "Analysis of the yttrium iron garnet optical spectrum with allowance for local lattice distortions," Phys. Solid State 33, 1507-1510 (1991).
- G. F. Dionne and G. A. Allen, "Spectral origins of giant Faraday rotation and ellipticity in Bi-substituted magnetic garnets," J. Appl. Phys. 73, 6127-6129 (1993).
- R. V. Pisarev, V. V. Pavlov, A. Kirilyuk, and Th. Rasing, "Nonlinear magnetooptics in garnets," J. Magn. Soc. Jpn. 20(S1), 23-28 (1996).
- V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, "A spectroscopic study of the nonlinear magneto-optical response of garnets," J. Appl. Phys. 81, 4631-4633 (1997).
- A. Kirilyuk, R. V. Pisarev, V. N. Gridnev, V. V. Pavlov, and Th. Rasing, "Nonlinear optics of magnetic crystals," J. Magn. Soc. Jpn. 23, 346-351 (1999).
- A. Kirilyuk, V. V. Pavlov, R. V. Pisarev, and Th. Rasing, "Asymmetry of second harmonic generation in magnetic thin films under circular optical exitation," Phys. Rev. B 61, R3796-R3799 (2000).
- V. V. Pavlov, R. V. Pisarev, M. Fiebig, and D. Fröhlich, "Nonlinear optical spectroscopy of epitaxial magnetic garnet films," Low Temp. Phys. 28, 523-527 (2002).
- V. V. Pavlov, R. V. Pisarev, M. Fiebig, D. Fröhlich, and Th. Lottermoser, "Magnetoelectric phenomena in nonlinear optics," Ferroelectrics 279, 93-109 (2002).
- V. V. Pavlov, R. V. Pisarev, M. Fiebig, and D. Fröhlich, "Optical harmonic generation in magnetic garnet epitaxial films near the fundamental absorption edge," Phys. Solid State 45, 662-669 (2003).
- A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aktsipetrov, "Nonlinear magneto-optical Kerr effect in gyrotropic photonic band gap structures: magneto-photonic microcavities," J. Magn. Magn. Mater. 258-259, 96-98 (2003).
- A. N. Bogdanov, U. K. Rößler, M. Wolf, and K. H. Müller, "Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets," Phys. Rev. B 66, 214410/1-16 (2002).
- B. Roessli, J. Schefer, G. A. Petrovskii, B. Ouladdiaf, M. Boehm, U. Staub, A. Vorotinaov, and L. Bezmaternikh, "Formation of a magnetic soliton lattice in copper metaborate," Phys. Rev. Lett. 86, 1885-1888 (2001).
- M. Martinez-Ripoli, S. Martinez-Carrera, and S. Garcia-Blanco, "The crystal structure of copper metaborate, CuB2O4," Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 27, 677-681 (1971).
- A. B. P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1984).
- R. G. Burns, Mineralogical Applications of Crystal Field Theory (Cambridge U. Press, Cambridge, UK, 1993).
- G. A. Petrakovskii, A. D. Balaev, and A. M. Vorotynov, "Magnetic susceptibility and magnetic-field behavior of CuB2O4 copper metaborate," Phys. Solid State 42, 321-325 (2000).
- M. Boehm, S. Martynov, B. Roessli, G. Petrakovskii, and J. Kulda, "Spin-wave spectrum of copper metaborate in the commensurate phase 10K <T <21K," J. Magn. Magn. Mater. 250, 313-318 (2002).
- Y. Tokura, S. Koshihara, T. Arima, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, Phys. Rev. B 41, 11657-11660 (1990).
- M. Bassi, P. Camagni, R. Rolli, G. Samoggia, F. Parmigiani, G. Dhalenne, and A. Revcolevschi, "Optical absorption of CuGeO3," Phys. Rev. B 54, 11030-11033 (1996).
- Y. Okimoto, Y. Tomioka, Y. Onose, Y. Otsuka, and Y. Tokura, "Charge ordering and disordering transitions in Pr1−xCaxMnO3(x=0.4) as investigated by optical spectroscopy," Phys. Rev. B 57, R9377-R9380 (1998).
- G. A. Petrakovskii, M. A. Popov, B. Roessli, and B. Ouladdiaf, "Incommensurate magnetic structure in copper metaborate," J. Exp. Theor. Phys. 93, 809-814 (2001).
- H. Nakamura, Y. Fujii, H. Kikuchi, and M. Chiba, "11B-NMR in soliton lattice system CuB2O4," J. Magn. Magn. Mater. 272-276, 1007-1008 (2004).
- R. Gómez-Abal, O. Ney, K. Satitkovitchai, and W. Hübner, "All-optical subpicosecond magnetic switching in NiO(001)," Phys. Rev. Lett. 92, 227402 (2004).
- M. Trzeciecki, A. Dähn, and W. Hübner, "Symmetry analysis of second-harmonic generation at surfaces of antiferromagnets," Phys. Rev. B 60, 1144-1160 (1999).
- O. Madelung, ed., Semiconductors: Physics of Nontetrahedrally Bonded Binary Compounds , Vol. 17g of Landolt-Börnstein: Numerical Data and Functional Relation- ships, New Series, Group 3 (Springer-Verlag, Berlin, 1984).
- S. Hüfner, Photoelectron Spectroscopy , (Springer-Verlag, Berlin, 1996).
- B. Fromme, d-dExcitations in Transition-Metal Oxides (Springer-Verlag, Berlin, 2001).
- M. Takahashi and J. Igarashi, "Local approach to electronic excitations in MnO, FeO, CoO, and NiO," Phys. Rev. B 54, 13566-13574 (1996).
- T. Bredow and A. R. Gerson, "Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO," Phys. Rev. B 61, 5194-5201 (2000).
- N. A. Mironova, G. A. Grinvald, V. N. Skvortsova, and U. A. Ulmanis, "Fine-structure of anti-ferromagnetic NiO absorption spectra," Sov. Phys. Solid State 23, 874-875 (1981).
- T. Tsuboi and W. Kleemann, "Fine-structure of near-infrared optical-absorption in NiO," J. Phys. Condens. Matter 6, 8625-8631 (1994).
- M. T. Hutchings and E. J. Samuelsen, "Measurement of spin-wave dispersion in NiO by inelastic neutron-scattering and its relation to magnetic properties," Phys. Rev. B 6, 3447-3461 (1972).
- F. U. Hillebrecht, H. Ohldag, N. B. Weber, C. Bethke, and U. Mick, "Magnetic moments at the surface of antiferromagnetic NiO(100)," Phys. Rev. Lett. 86, 3419-3422 (2001).
- K. Nakahigashi, N. Fukuoka, and Y. Shimomura, "Crystal-structure of antiferromagnetic NiO determined by x-ray topography," J. Phys. Soc. Jpn. 38, 1634-1640 (1975).
- W. L. Roth, "Magnetic structure of MnO, FeO, CoO, and NiO," Phys. Rev. 110, 1333-1341 (1958).
- S. J. Joshua, Symmetry Principles and Magnetic Symmetry in Solid State Physics (Adam Hilger, New York, 1991).
- W. Kleemann, F. J. Schäfer, and D. S. Tannhauser, "Linear birefringence in S-domains of NiO near the anti-ferromagnetic phase-transition," J. Magn. Magn. Mater. 15-18, 415-416 (1980).
- B. Hillebrands and K. Ounadjela, eds., Spin Dynamics in Confined Magnetic Structures II (Springer-Verlag, Heidelberg, 2003).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.