OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 22, Iss. 11 — Nov. 1, 2005
  • pp: 2357–2365

Emission and detection of terahertz pulses from a metal-tip antenna

Markus Walther, Geoffrey S. Chambers, Zhigang Liu, Mark R. Freeman, and Frank A. Hegmann  »View Author Affiliations

JOSA B, Vol. 22, Issue 11, pp. 2357-2365 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the antenna characteristics of a metal tip coupled to terahertz (THz) pulses generated from a photoconductive switch. Enhanced terahertz pulse emission is observed with the metal tip in contact with one of the electrodes of the photoconductive switch. Measurements of the angular dependence of the emitted THz radiation show that the metal tip acts as a highly directional antenna with radiation patterns well described by the theory for long-wire traveling-wave antennas. Similar behavior is observed for the metal tip acting as a THz pulse receiver, in accordance with the reciprocity principle. Effects related to the broadband nature of the THz pulses are discussed.

© 2005 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(230.7020) Optical devices : Traveling-wave devices
(230.7370) Optical devices : Waveguides
(300.6270) Spectroscopy : Spectroscopy, far infrared
(350.4010) Other areas of optics : Microwaves

ToC Category:
Optical Devices

Markus Walther, Geoffrey S. Chambers, Zhigang Liu, Mark R. Freeman, and Frank A. Hegmann, "Emission and detection of terahertz pulses from a metal-tip antenna," J. Opt. Soc. Am. B 22, 2357-2365 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett.  81, 1558–1560 (2002). [CrossRef]
  2. K. L. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett.  84, 305–307 (2004). [CrossRef]
  3. K. L. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.  85, 2715–2717 (2004). [CrossRef]
  4. P. C. M. Planken and N. C. J. van der Valk, “Spot-size reduction in terahertz apertureless near-field imaging,” Opt. Lett.  29, 2306–2308 (2004). [CrossRef] [PubMed]
  5. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett.  83, 3009–3011 (2003). [CrossRef]
  6. H. T. Chen, S. Kraatz, G. C. Cho, and R. Kersting, “Identification of a resonant imaging process in apertureless near-field microscopy,” Phys. Rev. Lett.  93, 267401 (2004). [CrossRef]
  7. R. Kersting, H. T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A  7, S184–S189 (2005). [CrossRef]
  8. T. Yuan, J. Z. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol.  45, 417–425 (2004). [CrossRef]
  9. V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, “Extension of laser harmonic-frequency mixing techniques into 9 μ region with an infrared metal–metal point-contact diode,” Appl. Phys. Lett.  15, 398–401 (1969). [CrossRef]
  10. L. M. Matarrese and K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett.  17, 8–10 (1970). [CrossRef]
  11. H. Kräutle, E. Sauter, and G. V. Schultz, “Antenna characteristics of whisker diodes used as submillimeter receivers,” Infrared Phys.  17, 477–483 (1977). [CrossRef]
  12. H. Kräutle, E. Sauter, and G. V. Schultz, “Properties of a submillimeter mixer in an open structure configuration,” Infrared Phys.  18, 705–712 (1978). [CrossRef]
  13. K. Mizuno, R. Kuwahara, and S. Ono, “Submillimeter detection using a Schottky diode with a longwire antenna,” Appl. Phys. Lett.  26, 605–607 (1975). [CrossRef]
  14. F. Klappenberger, A. A. Ignatov, S. Winnerl, E. Schomburg, W. Wegscheider, K. F. Renk, and M. Bichler, “Broadband semiconductor superlattice detector for THz radiation,” Appl. Phys. Lett.  78, 1673–1675 (2001). [CrossRef]
  15. D. Grischkowsky, I. N. Duling, J. C. Chen, and C. C. Chi, “Electromagnetic shock-waves from transmission-lines,” Phys. Rev. Lett.  59, 1663–1666 (1987). [CrossRef] [PubMed]
  16. D. R. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.  6, 1122–1135 (2000). [CrossRef]
  17. R. H. Jacobsen, P. U. Jepsen, S. R. Keiding, B. H. Larsen, and T. Holst, “Photoconductive sampling of subpicosecond pulses using mutual inductive coupling in coplanar transmission lines,” J. Appl. Phys.  80, 4214–4216 (1996). [CrossRef]
  18. U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission-lines,” IEEE J. Quantum Electron.  28, 2333–2342 (1992). [CrossRef]
  19. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett.  24, 1431–1433 (1999). [CrossRef]
  20. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B  17, 851–863 (2000). [CrossRef]
  21. T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett.  85, 6092–6094 (2004). [CrossRef]
  22. K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature  432, 376–379 (2004). [CrossRef] [PubMed]
  23. B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett.  56, 886–888 (1990). [CrossRef]
  24. Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett.  68, 2924–2926 (1996). [CrossRef]
  25. P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B  18, 313–317 (2001). [CrossRef]
  26. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B  13, 2424–2436 (1996). [CrossRef]
  27. F. G. Sun, G. A. Wagoner, and X. C. Zhang, “Measurement of free-space terahertz pulses via long-lifetime photoconductors,” Appl. Phys. Lett.  67, 1656–1658 (1995). [CrossRef]
  28. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett.  59, 1972–1974 (1991). [CrossRef]
  29. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  39, 910–916 (1991). [CrossRef]
  30. G. Hasnain, A. Dienes, and J. R. Whinnery, “Dispersion of picosecond pulses in coplanar transmission-lines,” IEEE Trans. Microwave Theory Tech.  34, 738–741 (1986). [CrossRef]
  31. M. Schall and P. U. Jepsen, “Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy,” Opt. Lett.  25, 13–15 (2000). [CrossRef]
  32. R. C. Johnson and H. Jasik, Antenna Engineering Handbook, 2nd ed. (McGraw-Hill, 1984), Chaps. 4 and 11.
  33. R. Catterjee, Antenna Theory and Practice (Wiley, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited