OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 22, Iss. 11 — Nov. 1, 2005
  • pp: 2427–2436

Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses

Robert E. Saperstein, Nikola Alić, Dmitriy Panasenko, Rostislav Rokitski, and Yeshaiahu Fainman  »View Author Affiliations


JOSA B, Vol. 22, Issue 11, pp. 2427-2436 (2005)
http://dx.doi.org/10.1364/JOSAB.22.002427


View Full Text Article

Enhanced HTML    Acrobat PDF (174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a novel method for subpicosecond pulse shaping based on longitudinal spectral decomposition in dispersive media. The entire system is created with standard telecommunications equipment allowing for integration with optical communication networks. The technique has the potential for time–bandwidth products 10 4 due to exclusive reliance on time-domain processing. We introduce the principle of operation and subsequently support it with results from our experimental system. Both theory and experiments suggest third-order dispersion as the principle limitation to realizing a large number of resolvable spots. Chirped fiber Bragg gratings offer a route to increase the time–bandwidth product for high-speed signal processing applications.

© 2005 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(260.2030) Physical optics : Dispersion
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

Citation
Robert E. Saperstein, Nikola Alić, Dmitriy Panasenko, Rostislav Rokitski, and Yeshaiahu Fainman, "Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses," J. Opt. Soc. Am. B 22, 2427-2436 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-11-2427


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science  259, 1581–1589 (1993). [CrossRef] [PubMed]
  2. J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple-access communication systems,” J. Lightwave Technol.  8, 478–491 (1990). [CrossRef]
  3. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron.  28, 908–920 (1992). [CrossRef]
  4. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B  14, 2348–2358 (1997). [CrossRef]
  5. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B  5, 1563–1572 (1988). [CrossRef]
  6. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.  33, 1890–1891 (1997). [CrossRef]
  7. M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron.  32, 161–172 (1996). [CrossRef]
  8. D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett.  14, 816–818 (2002). [CrossRef]
  9. R. E. Saperstein, D. Panasenko, and Y. Fainman, “Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber,” Opt. Lett.  29, 501–503 (2004). [CrossRef] [PubMed]
  10. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.  30, 1951–1963 (1994). [CrossRef]
  11. Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fiber dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett.  33, 983–985 (1997). [CrossRef]
  12. S. Longhi, M. Marano, P. Laporta, O. Svelto, and M. Belmonte, “Propagation, manipulation, and control of picosecond optical pulses at 1.5 m in fiber Bragg gratings,” J. Opt. Soc. Am. B  19, 2742–2757 (2002). [CrossRef]
  13. J. Azaña and L. R. Chen, “Synthesis of temporal optical waveforms by fiber Bragg gratings: a new approach based on space-to-frequency-to-time mapping,” J. Opt. Soc. Am. B  19, 2758–2769 (2002). [CrossRef]
  14. P. C. Chou, H. A. Haus, and J. F. Brennan III, “Reconfigurable time-domain spectral shaping of an optical pulse stretched by a fiber Bragg grating,” Opt. Lett.  25, 524–526 (2000). [CrossRef]
  15. S. Shen, C. C. Chang, H. P. Sardesai, V. Binjrajka, and A. M. Weiner, “Effects of self-phase modulation on sub-500 fs pulse transmission over dispersion compensated fiber links,” J. Lightwave Technol.  17, 452–461 (1999). [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  17. M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fiber Bragg grating for combined second- and third-order dispersion compensation,” Electron. Lett.  33, 1891–1893 (1997). [CrossRef]
  18. L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L. Grüner-Nielsen, and T. Veng, “Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons,” Opt. Lett.  25, 704–706 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited