OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 22, Iss. 11 — Nov. 1, 2005
  • pp: 2450–2458

Stokes pulse energy of Q-switched lasers with intracavity Raman conversion

Yurii V. Loiko, Alexander A. Demidovich, Vladimir V. Burakevich, and Alexander P. Voitovich  »View Author Affiliations

JOSA B, Vol. 22, Issue 11, pp. 2450-2458 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive the analytical expressions for the output Stokes pulse energy extracted from Q-switched lasers with intracavity Raman conversion. It has been shown that the problem of Stokes-pulse-energy optimization in Q-switched lasers is closely related to the optimization of intracavity photon-number density at a fundamental frequency in such lasers without the intracavity Raman conversion, although it has been found that at fixed laser parameters there is an optimum value of the cavity-mirror reflectivity at a Stokes frequency that maximizes the output Stokes pulse energy. These results have been applied for the Stokes-pulse-energy optimization of microchip solid-state lasers.

© 2005 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.2620) Nonlinear optics : Harmonic generation and mixing
(290.5910) Scattering : Scattering, stimulated Raman

ToC Category:
Nonlinear Optics

Yurii V. Loiko, Alexander A. Demidovich, Vladimir V. Burakevich, and Alexander P. Voitovich, "Stokes pulse energy of Q-switched lasers with intracavity Raman conversion," J. Opt. Soc. Am. B 22, 2450-2458 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984).
  2. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron.  6, 55–140 (1979). [CrossRef]
  3. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett.  23, 367–369 (1998). [CrossRef]
  4. L. S. Meng, P. A. Roos, and J. L. Carlsten, “Continuous-wave rotational Raman laser in H2,” Opt. Lett.  27, 1226–1228 (2002). [CrossRef]
  5. A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, “Stimulated Raman scattering in Nd:KGW laser with diode pumping,” J. Alloys Compd.300–301, 300–302 (2000).
  6. J. Findeisen, H. J. Eichler, and P. Peuser, “Self-stimulating, transversely diode pumped Nd3+:KGd(WO4)2 Raman laser,” Opt. Commun.  181, 129–133 (2000). [CrossRef]
  7. W. Chen, Yu. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.  194, 401–407 (2001). [CrossRef]
  8. P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun.  209, 403–409 (2002). [CrossRef]
  9. A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B  76, 509–514 (2003). [CrossRef]
  10. W. Koechner, Solid State Laser Engineering (Springer–Verlag, 1979).
  11. Y. Kalisky, “New trends in lasers and laser crystals,” Opt. Mater. (Amsterdam, Neth.)  13, 135–139 (1999). [CrossRef]
  12. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron.  27, 3–56 (2003). [CrossRef]
  13. P. Mandel, Theoretical Problems in Cavity Nonlinear Optics (Cambridge U. Press, 1997). [CrossRef]
  14. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron.  QE-25, 214–220 (1989). [CrossRef]
  15. J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron.  QE-27, 2220–2225 (1991). [CrossRef]
  16. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron.  QE-31, 1890–1901 (1995). [CrossRef]
  17. J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.  QE-34, 887–899 (1998). [CrossRef]
  18. G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron.  QE-33, 41–44 (1997). [CrossRef]
  19. P. Peterson and A. Gavrielides, “Pulse train characteristics of a passively Q-switched microchip laser,” Opt. Express  5, 149–156 (1999). [CrossRef] [PubMed]
  20. J. Liu, D. Shen, S.-Ch. Tam, and Y.-L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron.  QE-37, 888–896 (2001).
  21. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B  16, 1305–1312 (1999). [CrossRef]
  22. J. C. Bienfang, W. Rudolph, P. A. Roos, L. S. Meng, and J. L. Carlsten, “Steady state thermo-optic model of a continuous-wave Raman laser,” J. Opt. Soc. Am. B  19, 1318–1325 (2002). [CrossRef]
  23. P. A. Roos, L. S. Meng, and J. L. Carlsten, “Optimization of a far-off-resonance continuous-wave Raman laser,” J. Opt. Soc. Am. B  19, 1310–1317 (2002). [CrossRef]
  24. Yu. V. Loiko, A. A. Demidovich, V. A. Lisinetskii (B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Nezaleznasti Avenue 68, 220072 Minsk, Belarus), and A. P. Voitovich are preparing a manuscript to be called “Analytical treatment of Q-switched lasers with intracavity Raman conversion.”
  25. T.T.Basiev and R.C.Powell, eds., “Special issue on solid-state Raman lasers,” Opt. Mater. 11, 301–390 (1999).
  26. J. P. Meyn, T. Jensen, and G. Hubner, “Spectroscopic properties and efficient diode-pumped laser operation of Neodymium-doped Lanthanum Scandium Borate,” IEEE J. Quantum Electron.  QE-30, 913–917 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited