OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 22, Iss. 12 — Dec. 1, 2005
  • pp: 2553–2559

Optimization of electrical fixing in near-stoichiometric iron-doped lithium niobate crystals

Helge A. Eggert, Felix Kalkum, Benedikt Hecking, and Karsten Buse  »View Author Affiliations


JOSA B, Vol. 22, Issue 12, pp. 2553-2559 (2005)
http://dx.doi.org/10.1364/JOSAB.22.002553


View Full Text Article

Acrobat PDF (463 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic gratings are recorded in photorefractive near-stoichiometric iron-doped lithium niobate crystals in the presence of an external electric field close to the coercive field of the material. The holograms are erased by homogeneous illumination. Subsequent application of an external field well above the coercive field reveals the holographic grating partly and transiently. The diffraction efficiency of the revealed grating increases for longer recording times and for larger grating period lengths. All results can be understood by a process known as electrical fixing: During recording the space-charge pattern is transferred to a pattern of ferroelectric domains.

© 2005 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.2260) Materials : Ferroelectrics
(160.5320) Materials : Photorefractive materials

ToC Category:
Holography

Citation
Helge A. Eggert, Felix Kalkum, Benedikt Hecking, and Karsten Buse, "Optimization of electrical fixing in near-stoichiometric iron-doped lithium niobate crystals," J. Opt. Soc. Am. B 22, 2553-2559 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-12-2553


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P.Günter and J.-P.Huignard, eds., Photorefractive Materials and Their Applications I (Springer-Verlag, 1988), Vol. 61.
  2. F. Micheron and G. Bismuth, "Electrical control of fixation and erasure of holographic patterns in ferroelectric materials," Appl. Phys. Lett. 20, 79-81 (1972).
  3. Y. Qiao, S. Orlov, and D. Psaltis, "Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6," Opt. Lett. 18, 1004-1006 (1993).
  4. R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, "Photorefractive and domain gratings in barium titanate," Appl. Phys. Lett. 63, 3399-3401 (1993).
  5. A. S. Kewitsch, M. Segev, A. Yariv, G. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, "Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields," Phys. Rev. Lett. 73, 1174-1177 (1994).
  6. H. A. Eggert, B. Hecking, and K. Buse, "Electrical fixing in near-stoichiometric lithium niobate crystals," Opt. Lett. 29, 2476-2478 (2004).
  7. H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  8. P.Boffi, D.Piccinin, and M.C.Ubaldi, eds., Infrared Holography for Optical Communications (Springer-Verlag, 2003).
  9. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched 2nd harmonic generation--tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
  10. M. Yamada, "Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices," Rev. Sci. Instrum. 71, 4010-4016 (2000).
  11. D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, "Composition dependence of lithium diffusivity in lithium niobate at high temperature," J. Appl. Phys. 72, 3468-3473 (1992).
  12. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, "The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals," Appl. Phys. Lett. 72, 1981-1983 (1998).
  13. A. A. Kamshilin, J. Frejlich, and L. Cescato, "Photorefractive crystals for the stabilization of the holographic setup," Appl. Opt. 25, 2375-2381 (1986).
  14. X. Liang, X. Xuewu, C. Tow-Chong, Y. Shaoning, Y. Fengliang, and T. Y. Soon, "Lithium in-diffusion treatment of thick LiNbO3 crystals by the vapor transport equilibration method," J. Cryst. Growth 260, 143147 (2004).
  15. L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, "Composition dependence of the ultraviolet absorption edge in lithium niobate," Appl. Phys. Lett. 70, 2801-2803 (1997).
  16. D. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss, 2001).
  17. K.-H.Hellwege and A.M.Hellwege, eds., Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, (Springer Verlag, 1981), Vol. III/16.
  18. V. I. Kovalevich, L. A. Shuvalo, and T. R. Volk, "Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals," Phys. Status Solidi A 45, 249-252 (1978).
  19. V. Dierolf and C. Sandmann, "Direct-write method for domain inversion patterns in LiNbO3," Appl. Phys. Lett. 84, 3987-3989 (2004).
  20. R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, "Enhancment of the amplitude and lifetime of photoinduced space-charge fields in multidomain ferroelectric crystals," Phys. Rev. Lett. 72, 3883-3886 (1994).
  21. R. Landauer, "Electrostatic considerations in BaTiO3 domain formation during polarization reversal," J. Appl. Phys. 28, 227-234 (1957).
  22. K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
  23. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  24. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, 1957).
  25. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys. Rev. B 56, 1225-1235 (1996).
  26. V. Gopalan and T. E. Mitchell, "Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals," J. Appl. Phys. 83, 941-954 (1998).
  27. K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J. Appl. Phys. 91, 4528-4534 (2002).
  28. F. Holtmann, J. Imbrock, C. Bäumer, H. Hesse, E. Krätzig, and D. Kip, "Photorefractive properties of undoped lithium tantalate crystals for various composition," J. Appl. Phys. 96, 7455-7459 (2004).
  29. J. Fousek, R. Cudney, M. Zgonik, and P. Guenter, "Ferroelectric domain response to photorefractive space charge fields," Ferroelectrics 172, 85-94 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited