OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 22, Iss. 12 — Dec. 1, 2005
  • pp: 2570–2580

Rate-equation approach for frequency-modulation mode locking using the moment method

Nicholas G. Usechak and Govind P. Agrawal  »View Author Affiliations

JOSA B, Vol. 22, Issue 12, pp. 2570-2580 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (701 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A semianalytic approach based on the moment method is used for investigating pulse evolution in mode-locked lasers in which intracavity dispersive and nonlinear effects play a significant role. Its application to an FM mode-locked laser allows us to perform fast parametric studies while predicting the important pulse parameters. When third-order dispersive effects are negligible, a fully analytic treatment is developed that predicts how cavity parameters affect the final steady state. Our analytic approach also allows us to predict relaxation-oscillation behavior as the pulse approaches its steady state. We use this technique to investigate novel aspects specific to FM mode-locked lasers such as stability of and switching between the multiple steady-state solutions. All results obtained are in excellent agreement with numerical simulations.

© 2005 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Nicholas G. Usechak and Govind P. Agrawal, "Rate-equation approach for frequency-modulation mode locking using the moment method," J. Opt. Soc. Am. B 22, 2570-2580 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, "Averaged description of wave beams in linear and nonlinear media (the method of moments)," Radiophys. Quantum Electron. 14, 1062-1070 (1971). [CrossRef]
  2. S. E. Harris and R. Targ, "FM oscillation of the He-Ne laser," Appl. Phys. Lett. 5, 202-204 (1964). [CrossRef]
  3. G. Geister and R. Ulrich, "Neodymium-fiber laser with integrated-optic mode locker," Opt. Commun. 68, 187-189 (1988). [CrossRef]
  4. D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogeneous laser--Part I: Theory," IEEE J. Quantum Electron. QE-6, 694-708 (1970). [CrossRef]
  5. H. A. Haus and Y. Silberberg, "Laser mode locking with addition of nonliner index," IEEE J. Quantum Electron. QE-22, 325-331 (1986). [CrossRef]
  6. F. X. Kärtner, D. Kopf, and U. Keller, "Solitary-pulse stabilization and shortening in actively mode-locked lasers," J. Opt. Soc. Am. B 12, 486-496 (1995). [CrossRef]
  7. J. G. Caputo, C. B. Clausen, M. P. Sørensen, and S. Bischoff, "Amplitude-modulated fiber-ring laser," J. Opt. Soc. Am. B 17, 705-712 (2000). [CrossRef]
  8. H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, "Theory of soliton stability in asynchronous modelocking," J. Lightwave Technol. 14, 622-627 (1996). [CrossRef]
  9. N. G. Usechak, J. D. Zuegel, and G. P. Agrawal, "FM mode-locked fiber lasers operating in the autosoliton regime," IEEE J. Quantum Electron. 41, 753-761 (2005). [CrossRef]
  10. K. Tamura and M. Nakazawa, "Pulse energy equalization in harmonically FM mode-locked lasers with slow gain," Opt. Lett. 21, 1930-1932 (1996). [CrossRef] [PubMed]
  11. M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, "Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission," IEEE J. Quantum Electron. 34, 1075-1081 (1998). [CrossRef]
  12. A. M. Dunlop, W. J. Firth, and E. M. Wright, "Pulse shapes and stability in Kerr and active mode-locking (KAML)," Opt. Express 2, 204-211 (1998). [CrossRef] [PubMed]
  13. S. Longhi and P. Laporta, "Time-domain analysis of frequency modulation laser oscillation," Appl. Phys. Lett. 73, 720-722 (1998). [CrossRef]
  14. N. G. Usechak and G. P. Agrawal, "Semi-analytic technique for analyzing mode-locked lasers," Opt. Express 13, 2075-2081 (2005). [CrossRef] [PubMed]
  15. D. J. Kuizenga and A. E. Siegman, "FM and AM mode locking of the homogeneous laser--Part II: Experimental results in a Nd:YAG laser with internal FM modulation," IEEE J. Quantum Electron. QE-6, 709-715 (1970). [CrossRef]
  16. M. Nakazawa, E. Yoshida, and K. Tamura, "10 GHz, 2 ps regeneratively and harmonically FM mode-locked erbium fibre ring laser," Electron. Lett. 32, 1285-1287 (1996). [CrossRef]
  17. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  18. N. R. Pereira and L. Stenflo, "Nonlinear Schrödinger equation including growth and damping," Phys. Fluids 20, 1733-1734 (1977). [CrossRef]
  19. N.Akhmediev and A.Ankiewicz, eds., Dissipative Solitons (Springer, 2005). [CrossRef]
  20. E. Yoshida, K. Tamura, and M. Nakazawa, "Intracavity dispersion effects of a regeneratively and harmonically FM mode-locked erbium-doped fiber laser," IEICE Trans. Electron. E81-C, 189-194 (1998).
  21. To remain consistent with Ref. , a Fabry-Perot laser cavity was simulated. In a Fabry-Perot cavity the light passes through each element twice during a single round trip; therefore, DeltaFM→2DeltaFM=0.9 and Psat→Psat/2=12.5 mW.
  22. C. J. McKinstrie, "Effects of filtering on Gordon-Haus timing jitter in dispersion-managed systems," J. Opt. Soc. Am. B 19, 1275-1285 (2002). [CrossRef]
  23. J. Santhanam and G. P. Agrawal, "Raman-induced spectral shifts in optical fibers: general theory based on the moment method," Opt. Commun. 222, 413-420 (2003). [CrossRef]
  24. J. D. Kafka, T. Baer, and D. W. Hall, "Mode-locked erbium-doped fiber laser with soliton pulse shaping," Opt. Lett. 15, 1269-1271 (1989). [CrossRef]
  25. T. Brabec, Ch. Spielmann, and F. Krausz, "Mode locking in solitary lasers," Opt. Lett. 16, 1961-1963 (1991). [CrossRef] [PubMed]
  26. D. Kopf, F. X. Kärtner, K. J. Weingarten, and U. Keller, "Pulse shortening in a Nd:glass laser by gain reshaping and soliton formation," Opt. Lett. 19, 2146-2148 (1994). [CrossRef] [PubMed]
  27. K. Tamura, E. Yoshida, and M. Nakazawa, "Forced phase modulation and self phase modulation effects in dispersion-tuned mode-locked fiber lasers," IEICE Trans. Electron. E81-C, 195-200 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited