OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 22, Iss. 12 — Dec. 1, 2005
  • pp: 2715–2727

Chirped-pulse control of carriers in semiconductors: the role of many-body effects

Boris D. Fainberg, B. Levinsky, and V. A. Gorbunov  »View Author Affiliations

JOSA B, Vol. 22, Issue 12, pp. 2715-2727 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The possibility of realizing adiabatic rapid passage (ARP) with an intense chirped-pulse excitation (a concept well known in molecular systems) in direct-gap semiconductors is studied. Based on the semiconductor Bloch equations, the analysis shows that, in spite of complications due to band structure, signatures of ARP accompanied by an intrapulse pump-dump process (IPDP) should be observable in the dependence of the carriers’ density on the chirp rate in the frequency domain. The bandgap shrinkage, which is the main many-body effect, gives the dominant contribution to the asymmetry of this dependence on the chirp sign. We show that the bandgap shrinkage enlarges the carriers’ density and makes a major impact on the interplay of ARP with IPDP, enhancing ARP (suppressing IPDP) for positive chirped-pulse excitation and suppressing ARP (enhancing IPDP) for negative chirped-pulse excitation.

© 2005 Optical Society of America

OCIS Codes
(320.1590) Ultrafast optics : Chirping
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Ultrafast Optics

Boris D. Fainberg, B. Levinsky, and V. A. Gorbunov, "Chirped-pulse control of carriers in semiconductors: the role of many-body effects," J. Opt. Soc. Am. B 22, 2715-2727 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Melinger, S. R. Gandhi, A. Hariharan, D. Goswami, and W. S. Warren, "Adiabatic population transfer with frequency-swept laser pulses," J. Chem. Phys. 101, 6439-6454 (1994). [CrossRef]
  2. S. Chelkowski, A. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990). [CrossRef] [PubMed]
  3. B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, "Laser-induced population transfer in multistate systems: a comparative study," Phys. Rev. A 45, 5297-5300 (1992). [CrossRef] [PubMed]
  4. M. Shapiro and P. Brumer, "Coherent and incoherent laser control of photochemical reactions," Int. Rev. Phys. Chem. 13, 187-230 (1994). [CrossRef]
  5. R. J. Gordon, and S. A. Rice, "Active control of the dynamics of atoms and molecules," Annu. Rev. Phys. Chem. 48, 601-641 (1997). [CrossRef] [PubMed]
  6. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, "Laser-induced population transfer by adiabatic passage techniques," Annu. Rev. Phys. Chem. 52, 763-809 (2001). [CrossRef] [PubMed]
  7. J. Kunde, U. Siegner, S. Arlt, G. Steinmeyer, F. Morier-Genoud, and U. Keller, "Potential of femtosecond chirp control of ultrabroadband semiconductor continuum nonlinearities," J. Opt. Soc. Am. B 16, 2285-2294 (1999). [CrossRef]
  8. R. Binder and M. Lindenberg, "Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells," Phys. Rev. Lett. 81, 1477-1480 (1998). [CrossRef]
  9. J. M. Fraser and H. M. van Driel, "Quantum interference control of free-carrier density in GaAs," Phys. Rev. B 68, 085208-085208-14 (2003). [CrossRef]
  10. M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997). [CrossRef]
  11. L. Allen and J.-H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975).
  12. E. B. Treacy, "Adiabatic inversion with light pulses," Phys. Lett. A 27, 421-422 (1968). [CrossRef]
  13. B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse," J. Chem. Phys. 117, 7222-7232 (2002). [CrossRef]
  14. B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse. II. A simple model," J. Chem. Phys. 121, 8748-8754 (2004). [CrossRef] [PubMed]
  15. S. Ruhman and R. Kosloff, "Application of chirped ultrashort pulses for generating large-amplitude ground state vibrational coherence: a computer simulation," J. Opt. Soc. Am. B 7, 1748-1952 (1990). [CrossRef]
  16. G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, "High-power femtosecond chirped pulse excitation of molecules in solution," Chem. Phys. Lett. 262, 362-368 (1996). [CrossRef]
  17. D. J. Tannor and S. A. Rice, "Control of selectivity of chemical reaction via control of wave packet evolution," J. Chem. Phys. 83, 5013-5018 (1985). [CrossRef]
  18. G.-R. Unanyan, N. V. Vitanov, and K. Bergmann, "Preparation of entangled states by adiabatic passage," Phys. Rev. Lett. 87, 137902 (2001). [CrossRef] [PubMed]
  19. Y. Nagata and K. Yamashita, "Theoretical study on molecular excitation using chirped pulses in the condensed phase," Chem. Phys. Lett. 364, 144-151 (2002). [CrossRef]
  20. M. Demirplak and S. A. Rice, "Optical control of molecular dynamics in a liquid," J. Chem. Phys. 116, 8028-8035 (2002). [CrossRef]
  21. R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, "Carrier-carrier scattering and optical dephasing in highly excited semiconductors," Phys. Rev. B 45, 1107-1115 (1992). [CrossRef]
  22. R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996). [CrossRef] [PubMed]
  23. W. W. Chow, S. W. Koch, and M. Sargent, III, Semiconductor-Laser Physics (Springer-Verlag, 1997).
  24. B. D. Fainberg, B. Levinsky, and V. A. Gorbunov, "Femtosecond chirped pulse control of photoluminescence and generating electron-hole pairs in broadband semiconductors," J. Lumin. 102-103, 125-130 (2003). [CrossRef]
  25. B. M. Garraway and K.-A. Suominen, "Adiabatic passage by light-induced potentials in molecules," Phys. Rev. Lett. 80, 932-935 (1998). [CrossRef]
  26. M. Lindberg and S. W. Koch, "Effective Bloch equations for semiconductors," Phys. Rev. B 38, 3342-3350 (1988). [CrossRef]
  27. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2001).
  28. E. Sayed, L. Banyai, and H. Haug, "Coulomb quantum kinetics and optical dephasing on the femtosecond time scale," Phys. Rev. B 50,1541-1550 (1994). [CrossRef]
  29. M. Hartmann, H. Stolz, and R. Zimmermann, "Kinetics of screening in optically excited semiconductors," Phys. Status Solidi B 159, 35-42 (1988). [CrossRef]
  30. H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, 1996).
  31. R. Zimmermann, Many-Particle Theory of Highly Excited Semiconductors (Teubner, Berlin, 1988).
  32. H. Haug and S. W. Koch, "Semiconductor laser theory with many-body effects," Phys. Rev. A 39, 1887-1898 (1989). [CrossRef] [PubMed]
  33. A. Knorr, R. Binder, M. Lindberg, and S. W. Koch, "Theoretical study of resonant ultrashort-pulse propagation in semiconductors," Phys. Rev. A 46, 7179-7186 (1992). [CrossRef] [PubMed]
  34. M. Lindberg, R. Binder, and S. W. Koch, "Theory of the semiconductor photon echo," Phys. Rev. B 45, 1865-1875 (1992). [CrossRef]
  35. V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors (North Holland, 1987).
  36. S. Haas, F. Rossi, and T. Kuhn, "Generalized Monte Carlo approach for the study of the coherent ultrafast carrier dynamics in photoexcited semiconductors," Phys. Rev. B 53, 12855-12868 (1996). [CrossRef]
  37. F. Rossi and T. Kuhn, "Theory of ultrafast phenomena in photoexcited semiconductors," Rev. Mod. Phys. 74, 895-950 (2002). [CrossRef]
  38. O. Hess and T. Kuhn, "Maxwell--Bloch equations for spatially inhomogeneous semiconductor lasers. I. Theoretical formulation," Phys. Rev. A 54, 3347-3359 (1998). [CrossRef]
  39. Y. N. Demkov and M. Kunike, Vestn. Leningr. Univ. Fiz. Khim. 16, 39 (1969).
  40. F. T. Hioe, "Solution of Bloch equations involving amplitude and frequency modulations," Phys. Rev. A 30, 2100-2103 (1984). [CrossRef]
  41. B. D. Fainberg, "Absorption spectrum of intense chirped pulse by molecules in solution and the time evolution of vibrationally nonequilibrium populations," Chem. Phys. Lett. 332, 181-189 (2000). [CrossRef]
  42. V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, "Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave," Sov. Phys. JETP 30, 117-122 (1970).
  43. S. Schmitt-Rink, D. S. Chemla, and H. Haug, "Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors," Phys. Rev. B 37, 941-955 (1988). [CrossRef]
  44. K. Henneberg and H. Haug, "Nonlinear optics and transport in laser-excited semiconductors," Phys. Rev. B 38, 9759-9770 (1988). [CrossRef]
  45. D. W. Snoke, "Density dependence of electron scattering at low density," Phys. Rev. B 50, 11583-11591 (1994). [CrossRef]
  46. M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collision in optically excited semiconductors," Phys. Rev. B 35, 7986-7991 (1987). [CrossRef]
  47. N. S. Wingreen and M. Combescot, "Electron-electron scattering: collision integral and relaxation rate," Phys. Rev. B 40, 3191-3196 (1989). [CrossRef]
  48. V. A. Gasparov and R. Huguenin, "Electron-phonon, electron-electron and electron-surface scattering in metals from ballistic effects," Adv. Phys. 42, 393-521 (1993). [CrossRef]
  49. G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants (Addison-Wesley, 1981).
  50. S. M. Kogan, "On the theory of hot electrons in semiconductors," Sov. Phys. Solid State 4, 1813-1819 (1963).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited