OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 2 — Feb. 1, 2005
  • pp: 481–487

Analysis of the phonon-polariton response of silicon carbide microparticles and nanoparticles by use of the boundary element method

Carsten Rockstuhl, Martin G. Salt, and Hans P. Herzig  »View Author Affiliations


JOSA B, Vol. 22, Issue 2, pp. 481-487 (2005)
http://dx.doi.org/10.1364/JOSAB.22.000481


View Full Text Article

Enhanced HTML    Acrobat PDF (1856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the small-particle phonon-polariton response of several microstructures that are made of silicon carbide (SiC). Phonon polaritons can be excited in a wavelength region between 10 and 12 µm. Simple structures such as elliptical cylinders support phonon polaritons at two wavelengths, which depend on the axis ratio of the particle. In particles with a more irregular shape such as rectangular or triangular cylinders, up to five phonon polaritons can be excited. Through comparison of the strength of phonon-polariton excitation with the similar effect of the plasmon-polariton excitation in metallic nanoparticles, it is found that the excitation of phonon polaritons is more efficient. This behavior is attributed to the lower imaginary part of the dielectric constant of SiC.

© 2005 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.3060) Physical optics : Infrared
(260.5740) Physical optics : Resonance

Citation
Carsten Rockstuhl, Martin G. Salt, and Hans P. Herzig, "Analysis of the phonon-polariton response of silicon carbide microparticles and nanoparticles by use of the boundary element method," J. Opt. Soc. Am. B 22, 481-487 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-2-481


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Zheng, R. P. Joshi, and C. Fazi, "Effects of barrier height fluctuations and electron tunneling on the reverse characteristics of 6H-SiC Schottky contacts," J. Appl. Phys. 85, 3701-3707 (1999). [CrossRef]
  2. G. Ziegler, P. Lang, D. Theis, and C. Weyrich, "Single crystal growth of SiC substrate material for blue light emitting diodes," IEEE Trans. Electron Devices 30, 277-281 (1983). [CrossRef]
  3. K.-H. Lee, C. H. Park, B.-H. Cheong, and K. J. Chang, "First-principles study of the optical properties of SiC," Solid State Commun. 92, 869-872 (1994). [CrossRef]
  4. W. J. Moore, R. T. Holm, M. J. Yang, and J. A. Freitas, Jr., "Infrared dielectric constant of cubic SiC," J. Appl. Phys. 78, 7255-7258 (1995). [CrossRef]
  5. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  6. J. P. Kottmann and O. J. F. Martin, "Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires," Appl. Phys. B 73, 299-304 (2001). [CrossRef]
  7. H. Mutschke, A. C. Andersen, D. Clément, T. Henning, and G. Peiter, "Infrared properties of SiC particles," Astron. Astrophys. 345, 187-202 (1999).
  8. T. Bernatowicz, G. Fraundorf, T. Ming, E. Anders, B. Wopenka, E. Zinner, and P. Fraundorf, "Evidence for interstellar SiC in the Murray carbonaceous meteorite," Nature 330, 728-730 (1987). [CrossRef]
  9. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002). [CrossRef] [PubMed]
  10. J. Le Gall, M. Olivier, and J. J. Greffet, "Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton," Phys. Rev. B 55, 10105-10114 (1997). [CrossRef]
  11. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced lightmatter interaction at the nanometre scale," Nature 418, 159-162 (2002). [CrossRef] [PubMed]
  12. M. S. Anderson, "Enhanced infrared absorption with dielectric nanoparticles," Appl. Phys. Lett. 83, 2964-2966 (2003). [CrossRef]
  13. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-a route to nanoscale optical devices," Adv. Mater. 13, 1501-1505 (2001). [CrossRef]
  14. S. Linden, A. Christ, J. Kuhl, and H. Giessen, "Selective suppression of extinction within the surface plasmon resonance of gold nanoparticles," Appl. Phys. B 73, 311-316 (2001). [CrossRef]
  15. H. Dittlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett. 25, 563-565 (2000). [CrossRef]
  16. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  17. A. Madrazo and M. Nieto-Vesperinas, "Scattering of electromagnetic waves from a cylinder in front of a conducting plane," J. Opt. Soc. Am. A 12, 1298-1309 (1995). [CrossRef]
  18. C. Rockstuhl, M. Salt, and H. P. Herzig, "Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles," J. Opt. Soc. Am. A 20, 1969-1973 (2003). [CrossRef]
  19. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  20. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  21. E. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited