OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 5 — May. 1, 2005
  • pp: 1134–1142

Freezing phase scheme for fast adaptive control and its application to characterization of femtosecond coherent optical pulses reflected from semiconductor saturable absorber mirrors

Ming C. Chen, Jung Y. Huang, Qiantso Yang, C. L. Pan, and Jen-Inn Chyi  »View Author Affiliations


JOSA B, Vol. 22, Issue 5, pp. 1134-1142 (2005)
http://dx.doi.org/10.1364/JOSAB.22.001134


View Full Text Article

Acrobat PDF (547 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the development of a freezing phase scheme for complete-field characterization and adaptive coherent control with a femtosecond pulse shaper. The operational principle is based on a concept that the highest peak intensity will correspond to a frozen phase state of all spectral components involved in a coherent optical pulse. Our experimental and theoretical results reveal this new scheme to be fast and immune to the noise and laser power fluctuation. The freezing phase method has been used to investigate three types of semiconductor saturable absorber Bragg reflector (SBR). The optical pulses reflected from the SBR can be distorted in the spectral phase by a minor structural change of the SBR devices and can be clearly resolved with our method. The technique is useful for a variety of applications that require complete-field characterization and adaptive coherent control on the same setup.

© 2005 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.6120) Optical devices : Spatial light modulators
(320.5540) Ultrafast optics : Pulse shaping
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7100) Ultrafast optics : Ultrafast measurements

Citation
Ming C. Chen, Jung Y. Huang, Qiantso Yang, C. L. Pan, and Jen-Inn Chyi, "Freezing phase scheme for fast adaptive control and its application to characterization of femtosecond coherent optical pulses reflected from semiconductor saturable absorber mirrors," J. Opt. Soc. Am. B 22, 1134-1142 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-5-1134


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1992).
  2. N. Dudovich, B. Orion, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature (London) 418, 512-515 (2002).
  3. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature (London) 414, 57-60 (2001).
  4. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003), http://www.opticsexpress.org.
  5. C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
  6. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
  7. W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: the dream is alive," Science 259, 1581-1589 (1993).
  8. T. C. Weinacht, J. L. White, and P. H. Bucksbaum, "Toward strong field mode-selective chemistry," J. Phys. Chem. A 103, 10166-10168 (1999).
  9. R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored strong-field laser pulses," Science 292, 709-713 (2001).
  10. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280, 151-158 (1997).
  11. R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
  12. D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
  13. D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive real-time femtosecond pulse shaping," J. Opt. Soc. Am. B 15, 1615-1619 (1998).
  14. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm," Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
  15. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, and S. Backus, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation," Opt. Lett. 25, 587-589 (2000).
  16. A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
  17. J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultra-fast semiconductor nonlinearities," Appl. Phys. Lett. 77, 924-926 (2000).
  18. M. M. Wefers and K. A. Nelson, "Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators," J. Opt. Soc. Am. B 12, 1343-1362 (1995).
  19. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
  20. U. Keller, "Recent developments in compact ultrafast lasers," Nature (London) 424, 831-838 (2003).
  21. D. Kopt, G. Zhang, R. Fluck, M. Moser, and U. Keller, "All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources," Opt. Lett. 21, 486-488 (1996).
  22. R.Trebino, ed., Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, Boston, Mass., 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited