OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 22, Iss. 5 — May. 1, 2005
  • pp: 937–942

Double-well surface magneto-optical traps for neutral atoms in a vapor cell

Jianjun Hu, Jianping Yin, and Jianjun Hu  »View Author Affiliations

JOSA B, Vol. 22, Issue 5, pp. 937-942 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose two novel double-well magnetic surface traps (i.e., a double-well U-U-shaped wire trap and a double-well U-Z-shaped wire trap) for cold atoms using a straight and U-shaped current-carrying wire or two U-shaped current-carrying wires. These double-well magnetic traps can be continuously changed into a single-well by reducing the current in a straight wire or an inner U-shaped wire from a suitable value to zero, and vice versa. The spatial distributions of the magnetic fields from two current-carrying wire layouts and their field gradients are calculated and analyzed, and the trapped atomic number and its temperature in each magnetic well are estimated. Our study shows that our double-well magnetic surface traps can be used to realize two-species magneto-optical traps (MOTs) above the surface of the wire plane. Under the approximation of low intensity, cold atomic samples with a captured number of 10 6 atoms and a temperature of 270 μ K can be obtained in each Rb 85 atomic MOT. Since each MOT in two-species MOTs can be prepared independently, our controllable double-well trap can be used to study the cold collisions between two different atomic samples.

© 2005 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7010) Atomic and molecular physics : Laser trapping
(020.7490) Atomic and molecular physics : Zeeman effect
(230.3990) Optical devices : Micro-optical devices

Jianjun Hu, Jianping Yin, and Jianjun Hu, "Double-well surface magneto-optical traps for neutral atoms in a vapor cell," J. Opt. Soc. Am. B 22, 937-942 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, "Trapping of neutral sodium atoms with radiation pressure," Phys. Rev. Lett. 59, 2631-2634 (1987). [CrossRef] [PubMed]
  2. J. Weiner, V. S. Bagnato, S. C. Zilio, and P. Julienne, "Experiments and theory in cold and ultracold collisions," Rev. Mod. Phys. 71, 1-85 (1999). [CrossRef]
  3. M. Prentiss, A. Cable, J. E. Bjorkholm, S. Chu, E. L. Raab, and D. E. Pritchard, "Atomic-density-dependent losses in an optical trap," Opt. Lett. 13, 452-454 (1988). [CrossRef] [PubMed]
  4. D. Sesko, T. Walker, C. Monroe, A. Gallagher, and C. Weiman, "Collisional losses from a light-force atom trap," Phys. Rev. Lett. 63, 961-964 (1989). [CrossRef] [PubMed]
  5. J. Kawanaka, K. Shimizu, H. Takuma, and F. Shimizu, "Quadratic collisional loss rate of a Li7 trap," Phys. Rev. A 48, R883-R885 (1993). [CrossRef]
  6. W. Suptiz, G. Wokurka, F. Strauch, P. Kohns, and W. Ertmer, "Simultaneous cooling and trapping of Rb85 and Rb87 in a magneto-optical trap," Opt. Lett. 19, 1571-1573 (1994). [CrossRef]
  7. M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemmming, S. C. Zilio, and V. S. Bagnato, "Simultaneous trapping of two different atomic species in a vapor-cell magneto-optical trap," Phys. Rev. A 52, R4340-R4343 (1995). [CrossRef] [PubMed]
  8. G. D. Tells, L. G. Marcassa, S. R. Muniz, S. G. Miranda, and A. Antunes, "Inelastic cold collisions of a Na/Rb mixture in a magneto-optical trap," Phys. Rev. A 59, R23-R27 (1999). [CrossRef]
  9. J. P. Shaffer, W. Chapulpczak, and N. P. Bigelow, "Photoassociative ionization heteronuclear molecules in a novel two-species magneto-optical trap," Phys. Rev. Lett. 82, 1124-1128 (1999). [CrossRef]
  10. Y. E. Young, R. Ejnisman, J. P. Shaffer, and N. P. Bigelow, "Heteronuclear hyperfine-state-changing cold collisions," Phys. Rev. A 62, 055403-044406 (2000). [CrossRef]
  11. G. D. Telles, W. Garcia, L. G. Marcassa, V. S. Bagnato, D. Ciampini, M. Fazzi, J. H. Müller, D. Wilkowski, and E. Arimondo, "Trap loss in a two-species Rb-Cs magneto-optical trap," Phys. Rev. A 63, 033406-033410 (2001). [CrossRef]
  12. J. P. Shaffer, W. Chalupczak, and N. P. Bigelow, "Differential measurement of the ultracold Cs radiative escape and fine structure changing collision rates," Eur. Phys. J. D 7, 323-330 (1999). [CrossRef]
  13. M. Marinescu and H. R. Sadefhpour, "Long-range potentials for two-species alkali-metal atoms," Phys. Rev. A 59, 390-404 (1999). [CrossRef]
  14. D. Cassettari, A. Chenet, R. Folman, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco, and J. Schmiedmayer, "Micromanipulation of neutral atoms with nanofabricated structures," Appl. Phys. B: Lasers Opt. 70, 721-730 (2000). [CrossRef]
  15. I. Reichel, W. Hansel, and T. W. Hansch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398-3401 (1999). [CrossRef]
  16. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, "Optical molasses," J. Opt. Soc. Am. B 6, 2084-2101 (1989). [CrossRef]
  17. C. Monroe, W. Swann, H. Robinson, and C. Weiman, "Very cold trapped atoms in a vapor cell," Phys. Rev. Lett. 65, 1571-1574 (1990). [CrossRef] [PubMed]
  18. M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Weetervelt, "Micro-electromagnets for atom manipulation," Appl. Phys. Lett. 72, 2906-2908 (1998). [CrossRef]
  19. U. Ernst, A. Marte, F. Schreck, J. Schuster, and G. Rempe, "Bose-Einstein condensation in a pure Ioffe-Pritchard field configuration," Europhys. Lett. 41, 1-6 (1998). [CrossRef]
  20. L. V. Hau, B. D. Busch, C. Liu, Z. Dutton, M. M. Burns, and J. A. Golovchenko, "Near-resonant spatial images of confined Bose-Einstein condensates in a 4-Dee magnetic bottle," Phys. Rev. A 58, R54-R58 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited