OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 22, Iss. 5 — May. 1, 2005
  • pp: 962–974

Shaping the radiation field of tilted fiber Bragg gratings

Robert B. Walker, Stephen J. Mihailov, Ping Lu, and Dan Grobnic  »View Author Affiliations

JOSA B, Vol. 22, Issue 5, pp. 962-974 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (5961 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Over the past several years polarization-sensitive mode-coupling characteristics of tilted fiber Bragg gratings have been exploited for the development of a number of useful devices, including fiber polarimeters, gain flattening filters, spectrum analyzers, and polarization-dependent-loss compensators. Although a variety of tools are available to model blazed grating responses, to our knowledge a simplified explanation of the parametric dependencies and potential behavior has never been fully presented, making the optimization of these components difficult and elusive at times. We provide a thorough, intuitive discussion of these trends and possibilities as observed through an extensive theoretical and numerical analysis rooted in the volume current method. In addition to a review of the potential limitations and shortcomings of this formulation, some rough guidelines for the manufacture of various devices are also disclosed.

© 2005 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(050.0050) Diffraction and gratings : Diffraction and gratings
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(230.1480) Optical devices : Bragg reflectors
(230.5440) Optical devices : Polarization-selective devices
(350.4600) Other areas of optics : Optical engineering

Robert B. Walker, Stephen J. Mihailov, Ping Lu, and Dan Grobnic, "Shaping the radiation field of tilted fiber Bragg gratings," J. Opt. Soc. Am. B 22, 962-974 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill, Y. Fujji, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978). [CrossRef]
  2. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989). [CrossRef] [PubMed]
  3. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993). [CrossRef]
  4. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, "All-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings," IEEE Photonics Technol. Lett. 7, 388-390 (1995). [CrossRef]
  5. F. Ouellette, "All-fiber filter for efficient dispersion compensation," Opt. Lett. 16, 303-305 (1991). [CrossRef] [PubMed]
  6. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  7. C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, Toronto, 1996), p. 29.
  8. P. St. J. Russell, "Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures," J. Mod. Opt. 38, 1599-1619 (1991). [CrossRef]
  9. O. H. Waagaard and J. Skaar, "Synthesis of birefringent reflective gratings," J. Opt. Soc. Am. A 21, 1207-1220 (2004). [CrossRef]
  10. K.O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26, 1270-1272 (1990). [CrossRef]
  11. G. Meltz and W. W. Morey, "Design and performance of bidirectional fiber Bragg grating taps," Optical Fiber Communication, Vol. 4 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 44.
  12. T. Erdogan and J. E. Sipe, "Tilted fiber phase gratings," J. Opt. Soc. Am. A 13, 296-313 (1996). [CrossRef]
  13. P.-Y. Fonjallaz, H. G. Limberger, and R. P. Salathé, "Bragg gratings with efficient and wavelength-selective fiber out-coupling," J. Lightwave Technol. 15, 371-376 (1997). [CrossRef]
  14. P. S. Westbrook, T. A. Strasser, and T. Erdogan, "In-line polarimeter using blazed fiber gratings," IEEE Photonics Technol. Lett. 12, 1352-1354 (2000). [CrossRef]
  15. K. S. Lee and J. Y. Cho, "Polarization-mode coupling in birefringent fiber gratings," J. Opt. Soc. Am. A 19, 1621-1631 (2002). [CrossRef]
  16. J. M. Battiato and R. K. Kostuk, "45° slanted fibre Bragg grating design with prism coupled holographic exposure," Electron. Lett. 38, 1323-1324 (2002). [CrossRef]
  17. K. Zhou, A. G. Simpson, L. Zhang, and I. Bennion, "Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers," IEEE Photonics Technol. Lett. 15, 936-938 (2003). [CrossRef]
  18. P. S. Westbrook, T. A. Strasser, and T. Erdogan, "Compact, in-line, all-fiber polarimeter using fiber gratings," in Optical Fiber Communications Conference, Postconference Digest, Vol. 37 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), PD22, pp. 233-235.
  19. R. Kashyap, R. Wyatt, and R. J. Campbell, "Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating," Electron. Lett. 29, 154-156 (1993). [CrossRef]
  20. J. L. Wagener, T. A. Strasser, J. R. Pedrazzani, J. DeMarco, and D. J. DiGiovanni, "Fibre grating optical spectrum analyzer tap," in 23rd European Conference on Optical Communications, IEE Conference Publication 448/5(Institution of Electrical Engineers, Stevenage, England, 1997), pp. 65-68.
  21. S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, "UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equaliser," IEE Proc.: Optoelectron. 149, 211-216 (2002).
  22. J. Peupelmann, E. Krause, A. Bandemer, and C. Schäffer, "Fibre-polarimeter based on grating taps," Electron. Lett. 38, 1248-1250 (2002). [CrossRef]
  23. G. Meltz, W. W. Morey, and W. H. Glenn, "In-fiber Bragg grating tap," in Optical Fiber Communications, Vol. 1 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 24.
  24. L. Kotacka, J. Chauve, and R. Kashyap, "Angular and azimuthal distribution of side scattered light from fiber Bragg gratings," paper 5577-34 presented at Photonics North 2004, Ottawa, Ontario, Canada, 27-29 September 2004.
  25. R. B. Walker, S. J. Mihailov, P. Lu, and D. Grobnic, "Optimizing grating based devices with the volume current method," paper 5577-35 presented at Photonics North 2004, Ottawa, Ontario, Canada, 27-29 September 2004.
  26. A. W. Snyder, "Radiation losses due to variations of radius on dielectric or optical fibers," IEEE Trans. Microwave Theory Tech. MTT-18, 608-615 (1970). [CrossRef]
  27. E. G. Rawson, "Analysis of scattering from fiber waveguides with irregular core surfaces," Appl. Opt. 13, 2370-2377 (1974). [CrossRef] [PubMed]
  28. A. W. Snyder, I. White, and D. J. Mitchell, "Radiation from bent optical waveguides," Electron. Lett. 38, 332-333 (1975). [CrossRef]
  29. M. Kuznetsov and H. A. Haus, "Radiation loss in dielectric waveguide structures by the volume current method," IEEE J. Quantum Electron. QE-19, 1505-1514 (1983). [CrossRef]
  30. P. C. Kendall, P. N. Robson, and J. E. Sitch, "Rib waveguide curvature loss: the scalar problem," IEE Proc.-J: Optoelectron. 132, 140-145 (1985).
  31. M. Kuznetsov, "Radiation loss in dielectric waveguide Y-branch structures," J. Lightwave Technol. LT-3, 674-677 (1985). [CrossRef]
  32. R. Jordan and D. G. Hall, "Radiation from concentric-circle grating, surface-emitting planar waveguides: the volume current method," Appl. Phys. Lett. 64, 3077-3079 (1994). [CrossRef]
  33. B. E. Little and S. T. Chu, "Estimating surface-roughness loss and output coupling in microdisk resonators," Opt. Lett. 21, 1390-1392 (1996). [CrossRef] [PubMed]
  34. M. J. Holmes, R. Kashyap, and R. Wyatt, "Physical properties of optical fiber sidetap grating filters: free-space model," IEEE J. Sel. Top. Quantum Electron. 5, 1353-1365 (1999). [CrossRef]
  35. Y. Li, M. Froggatt, and T. Erdogan, "Volume current method for analysis of tilted fiber gratings," J. Lightwave Technol. 19, 1580-1591 (2001). [CrossRef]
  36. R. Kashyap, Fiber Bragg Gratings (Academic, New York, 1999), p. 128.
  37. Y. Li, S. Wielandy, G. E. Carver, H. L. Durko, and P. S. Westbrook, "Influence of the longitudinal mode field in grating scattering from weakly guided optical fiber waveguides," Opt. Lett. 29, 691-693 (2004). [CrossRef] [PubMed]
  38. I. S. Gradshteyn and I. M. Rhyzhik, Table of Integrals, Series, and Products, 6th ed. (Academic, New York, 2000), pp. 909-910, Equation Set 8.451.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited