OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 22, Iss. 6 — Jun. 1, 2005
  • pp: 1325–1329

Magnetic induced dichroism and frequency stabilization of violet–blue diode lasers on gallium atomic transitions

Barbara Fazio, Onofrio M. Maragó, and Maurizio Musso  »View Author Affiliations

JOSA B, Vol. 22, Issue 6, pp. 1325-1329 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the magnetic-field-induced dichroism on a sample of gallium neutral atoms created in a hollow cathode lamp and describe a method for robust stabilization of violet–blue diode lasers tuned on gallium atomic transitions for an atom nanofabrication experiment. We compare the experimental dichroic signals with theoretical simulations obtained by the solving of the exact atom-field interaction Hamiltonian. We find excellent agreement when considering the magnetic field shielding from the hollow cathode. This method allows for a wide range of frequency tuning, modulation-free locking, and long-term stability of external-cavity diode lasers. From analysis of a square root Allan variance we have achieved a stability of 1 MHz at 1 - s average time.

© 2005 Optical Society of America

OCIS Codes
(020.7490) Atomic and molecular physics : Zeeman effect
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Barbara Fazio, Onofrio M. Maragó, and Maurizio Musso, "Magnetic induced dichroism and frequency stabilization of violet-blue diode lasers on gallium atomic transitions," J. Opt. Soc. Am. B 22, 1325-1329 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer-Verlag, Berlin, 1997). [CrossRef]
  2. D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-R38 (2003). [CrossRef]
  3. K. B. MacAdam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992). [CrossRef]
  4. L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995). [CrossRef]
  5. O. N. Prudnikov and E. Arimondo, "Sub-Doppler laser cooling on combined optical transitions," J. Opt. Soc. Am. B 20, 909-914 (2003). [CrossRef]
  6. O. M. Maragò, B. Fazio, P. G. Gucciardi, and E. Arimondo, "Atomic gallium laser spectroscopy with violet/blue diode lasers," Appl. Phys. B 77, 809-815 (2003). [CrossRef]
  7. J. Tenenbaum, E. Miron, S. Lavi, M. Strauss, J. Oreg, and G. Erez, "Velocity changing collisions in saturation absorption of U," J. Phys. B 16, 4543-4553 (1983). [CrossRef]
  8. K. L. Corwin, Z. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, "Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor," Appl. Opt. 37, 3295-3298 (1998). [CrossRef]
  9. U. Shim, J. Kim, and W. Jhe, "Saturated absorption spectroscopy in the presence of a longitudinal magnetic field," J. Korean Phys. Soc. 35, 222-225 (1999).
  10. N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001). [CrossRef]
  11. A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, Oxford, UK, 1977).
  12. M. Musso, "Hyperfine structure of atoms in combined external fields," Z. Phys. D: At., Mol. Clusters 24, 203-210 (1992). [CrossRef]
  13. L. Windholz and M. Musso, "Zeeman and Paschen-Back-effect of the hyperfine structure of the sodium D2-line," Z. Phys. D: At., Mol. Clusters 8, 239-249 (1988). [CrossRef]
  14. L. Windholz, C. Krenn, G. Gwehenberger, M. Musso, and B. Schnizer, "Atomic transfer between hyperfine levels in combined electric and magnetic fields," Phys. Rev. Lett. 77, 2190-2193 (1996). [CrossRef] [PubMed]
  15. Handbook of Chemistry and Physics, D.R.Lide, ed., 85th ed. (CRC Press, Boca Raton, Fla., 2004).
  16. A. Lurio and A. G. Prodell, "Hfs separations and Hfs anomalies in the P1/22 state of Ga69, Ga71, Tl203, and Tl205," Phys. Rev. 101, 79-83 (1956). [CrossRef]
  17. R. T. Daly and J. H. Holloway, "Nuclear magnetic octupole moments of the stable gallium isotopes," Phys. Rev. 96, 539-540 (1954). [CrossRef]
  18. J. H. M. Neijzen and A. Dönszelmann, "Hyperfine structure and isotope shift measurements in neutral gallium and indium with a pulsed dye laser," Physica A 98C, 235-241 (1980).
  19. I. I. Sobelmann, Atomic Spectra and Radiative Transitions, (Springer, Berlin, 1979). [CrossRef]
  20. J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, "Frequency-stabilized high-power violet laser diode with an ytterbium hollow cathod lamp," Opt. Lett. 28, 245-247 (2003). [CrossRef] [PubMed]
  21. D. W. Allan, "Statistics of atomic frequency standards," Proc. IEEE 54, 221-231 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited