OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 7 — Jul. 1, 2005
  • pp: 1366–1370

Composite vortex-ring solitons in Bessel photonic lattices

Yaroslav V. Kartashov, Lluis Torner, and Victor A. Vysloukh  »View Author Affiliations


JOSA B, Vol. 22, Issue 7, pp. 1366-1370 (2005)
http://dx.doi.org/10.1364/JOSAB.22.001366


View Full Text Article

Enhanced HTML    Acrobat PDF (316 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We reveal the existence of dynamically stable, composite topological solitons in Bessel photonic lattices imprinted in focusing Kerr-type nonlinear media. The new stable, composite solitons are made of a vortex ring with unit topological charge incoherently coupled to a fundamental soliton. The stabilization of the otherwise highly azimuthally unstable vortex rings is provided under suitable conditions, which we study in detail, by cross-phase-modulation coupling with the fundamental soliton companion.

© 2005 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
Yaroslav V. Kartashov, Lluis Torner, and Victor A. Vysloukh, "Composite vortex-ring solitons in Bessel photonic lattices," J. Opt. Soc. Am. B 22, 1366-1370 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-7-1366


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, New York, 2003).
  2. A. S. Desyatnikov, L. Torner, and Y. S. Kivshar, 'Optical vortices and vortex solitons,' Prog. Opt. (to be published).
  3. V. I. Kruglov and R. A. Vlasov, 'Spiral self-trapping propagation of optical beams in media with cubic nonlinearity,' Phys. Lett. 111, 401-404 (1985). [CrossRef]
  4. L. Torner and D. V. Petrov, 'Azimuthal instabilities and self-splitting of beams into solitons in bulk second-harmonic generation,' Electron. Lett. 33, 608-610 (1997). [CrossRef]
  5. W. J. Firth and D. V. Skryabin, 'Optical solitons carrying orbital angular momentum,' Phys. Rev. Lett. 79, 2450-2453 (1997). [CrossRef]
  6. J. P. Torres, J. M. Soto-Crespo, L. Torner, and D. V. Petrov, 'Solitary wave vortices in quadratic nonlinear media,' J. Opt. Soc. Am. B 15, 625-627 (1998). [CrossRef]
  7. V. Tikhonenko, J. Christou, and B. Luther-Davies, 'Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,' J. Opt. Soc. Am. B 12, 2046-2052 (1995). [CrossRef]
  8. Z. Chen, M. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, 'Steady-state vortex-screening solitons formed in biased photorefractive media,' Opt. Lett. 22, 1751-1753 (1997). [CrossRef]
  9. D. V. Petrov, L. Torner, J. Martorell, R. Vilaseca, J. P. Torres, and C. Cojocaru, 'Observation of azimuthal modulation instability and formation of patterns of optical solitons in a quadratic nonlinear crystal,' Opt. Lett. 23, 1444-1446 (1998). [CrossRef]
  10. S. Minardi, G. Molina-Terriza, P. Di Trapani, J. P. Torres, and L. Torner, 'Soliton algebra by vortex-beam splitting,' Opt. Lett. 26, 1004-1006 (2001). [CrossRef]
  11. M. S. Bigelow, P. Zerom, and R. W. Boyd, 'Breakup of ring beams carrying orbital angular momentum in sodium vapor,' Phys. Rev. Lett. 92, 083902 (2004). [CrossRef] [PubMed]
  12. D. Mihalache, D. Mazilu, B. A. Malomed and F. Lederer, 'Stable vortex solitons in a vectorial cubic-quintic model,' J. Opt. B 6, S341-S350 (2004). [CrossRef]
  13. T. A. Davydova and A. I. Yakimenko, 'Stable multicharged localized optical vortices in cubic-quintic nonlinear media,' J. Opt. A 6, 197-201 (2004). [CrossRef]
  14. Y. V. Kartashov, V. A. Vysloukh, A. A. Egorov, and A. S. Zelenina, 'Stable periodic waves supported by competing cubic-quintic nonlinearity,' J. Opt. Soc. Am. B 21, 982-988 (2004). [CrossRef]
  15. D. Mihalache, D. Mazilu, B. A. Malomed, and F. Lederer, 'Stable vortex solitons supported by competing quadratic and cubic nonlinearities,' Phys. Rev. E 69, 066614 (2004). [CrossRef]
  16. S. K. Adhikari, 'Stabilization of bright solitons and vortex solitons in a trapless three-dimensional Bose-Einstein condensate by temporal modulation of the scattering length,' Phys. Rev. A 69, 063613 (2004). [CrossRef]
  17. A. Ferrando, M. Zacarés, P. Fernández de Córdoba, D. Binosi, and J. A. Monsoriu, 'Vortex solitons in photonic crystal fibers,' Opt. Express 12, 817-822 (2004). [CrossRef] [PubMed]
  18. Z. H. Musslimani, M. Segev, D. N. Christodoulides, and M. Soljacic, 'Composite multihump vector solitons carrying topological charge,' Phys. Rev. Lett. 84, 1164-1167 (2000). [CrossRef] [PubMed]
  19. J. J. García-Ripoll, V. M. Pérez-García, E. A. Ostrovskaya, and Y. S. Kivshar, 'Dipole-mode vector solitons,' Phys. Rev. Lett. 85, 82-85 (2000). [CrossRef] [PubMed]
  20. J. Yang and D. Pelinovsky, 'Stable vortex and dipole vector solitons in a saturable nonlinear medium,' Phys. Rev. E 67, 016608 (2003). [CrossRef]
  21. I. D. Maleev and G. A. Swartzlander, 'Composite optical vortices,' J. Opt. Soc. Am. B 20, 1169-1176 (2003). [CrossRef]
  22. D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, 'Observation of discrete vortex solitons in optically induced photonic lattices,' Phys. Rev. Lett. 92, 123903 (2004). [CrossRef] [PubMed]
  23. J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, 'Observation of vortex-ring 'discrete' solitons in 2D photonic lattices,' Phys. Rev. Lett. 92, 123904 (2004). [CrossRef]
  24. J. Yang and Z. Musslimani, 'Fundamental and vortex solitons in a two-dimensional optical lattice,' Opt. Lett. 28, 2094-2096 (2003). [CrossRef] [PubMed]
  25. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, 'Stable ring-profile vortex solitons in Bessel optical lattices,' Phys. Rev. Lett. 94, 043992 (2005). [CrossRef]
  26. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, 'Discrete solitons in photorefractive optically induced photonic lattices,' Phys. Rev. E 66, 046602 (2002). [CrossRef]
  27. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, 'Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,' Nature 422, 147-150 (2003). [CrossRef] [PubMed]
  28. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, 'Spatial solitons in optically induced gratings,' Opt. Lett. 28, 710-712 (2003). [CrossRef] [PubMed]
  29. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, 'Discrete solitons and solitons-induced dislocations in partially coherent photonic lattices,' Phys. Rev. Lett. 92, 123902 (2004). [CrossRef]
  30. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, 'Observation of discrete solitons in optically induced real time waveguide arrays,' Phys. Rev. Lett. 90, 023902 (2003). [CrossRef] [PubMed]
  31. Y. V. Kartashov, A. S. Zelenina, L. Torner, and V. A. Vysloukh 'Spatial soliton switching in quasi-continuous optical arrays,' Opt. Lett. 29, 766-768 (2004). [CrossRef] [PubMed]
  32. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, 'Soliton trains in photonic lattices,' Opt. Express 12, 2831-2837 (2004). [CrossRef] [PubMed]
  33. Y. V. Kartashov, A. A. Egorov, L. Torner, and D. N. Christodoulides, 'Stable soliton complexes in two-dimensional photonic lattices,' Opt. Lett. 29, 1918-1920 (2004). [CrossRef] [PubMed]
  34. D. N. Christodoulides and R. I. Joseph, 'Discrete self-focusing in nonlinear arrays of coupled waveguides,' Opt. Lett. 13, 794-796 (1988). [CrossRef] [PubMed]
  35. D. N. Christodoulides, F. Lederer, and Y. Silberberg, 'Discretizing light behavior in linear and nonlinear waveguide lattices,' Nature 424, 817-823 (2003). [CrossRef] [PubMed]
  36. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, 'Rotary solitons in Bessel optical lattices,' Phys. Rev. Lett. 93, 093940 (2004).
  37. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, 'Rotary dipole-mode solitons in Bessel optical lattices,' J. Opt. B 6, 444-447 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited