OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 22, Iss. 7 — Jul. 1, 2005
  • pp: 1437–1442

Spatial coherence singularities and incoherent vortex solitons

Kristian Motzek, Yuri S. Kivshar, Ming-Feng Shih, and Grover A. Swartzlander, Jr.  »View Author Affiliations

JOSA B, Vol. 22, Issue 7, pp. 1437-1442 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study spatially localized optical vortices created by self-trapping of partially incoherent light with a phase dislocation in a biased photorefractive crystal. In contrast to a decay of coherent self-trapped vortex beams due to the azimuthal modulational instability, the incoherent vortices are stabilized for large values of the spatial incoherence; this was confirmed by experiment. We analyze the spatial coherence properties of the incoherent optical vortices and reveal the existence of ringlike singularities in the spatial coherence function of a vortex field that can characterize the stable propagation of vortices through nonlinear media.

© 2005 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

Kristian Motzek, Yuri S. Kivshar, Ming-Feng Shih, and Grover A. Swartzlander, Jr., "Spatial coherence singularities and incoherent vortex solitons," J. Opt. Soc. Am. B 22, 1437-1442 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London, Ser. A 336, 165-190 (1974). [CrossRef]
  2. See for example a comprehensive review paper by M. S. Soskin and M. V. Vasnetsov, "Optical vortices," in Progress in Optics, Vol. 42, E.Wolf, ed. (Elsevier, Amsterdam, 2001).
  3. See an extensive list of references on optical vortices in G. A. Swartzlander, Jr., Singular Optics/Optical Vortex References, http://www.u.arizona.edu/∼grovers/SO/so.html.
  4. Such self-trapped singular beams were first suggested in V. I. Kruglov and R. A. Vlasov, "Spiral self-trapping propagation of optical beams in media with cubic nonlinearity," Phys. Lett. 111, 401-404 (1985). [CrossRef]
  5. See, for example Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, San Diego, Calif., 2003), Chap. 8.
  6. W. J. Firth and D. V. Skryabin, "Optical solitons carrying orbital angular momentum," Phys. Rev. Lett. 79, 2450-2453 (1997). [CrossRef]
  7. L. Torner and D. V. Petrov, "Azimuthal instabilities and self-breaking of beams into sets of solitons in bulk second-harmonic generation," Electron. Lett. 33, 608-610 (1997). [CrossRef]
  8. D. V. Skryabin and W. Firth, "Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media," Phys. Rev. E 58, 3916-3930 (1998). [CrossRef]
  9. V. Tikhonenko, J. Christou, and B. Luther-Davies, "Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium," J. Opt. Soc. Am. B 12, 2046-2052 (1995). [CrossRef]
  10. V. Tikhonenko, J. Christou, and B. Luther-Davies, "Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium," Phys. Rev. Lett. 76, 2698-2701 (1996). [CrossRef] [PubMed]
  11. Z. Chen, M. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Steady-state vortex-screening solitons formed in biased photorefractive media," Opt. Lett. 22, 1751-1753 (1997). [CrossRef]
  12. D. V. Petrov, L. Torner, J. Nartorell, R. Vilaseca, J. P. Torres, and C. Cojocaru, "Observation of azimuthal modulational instability and formation of patterns of optical solitons in a quadratic nonlinear crystal," Opt. Lett. 23, 1444-1446 (1998). [CrossRef]
  13. H. Saito and M. Ueda, "Split instability of a vortex in an attractive Bose-Einstein condensate," Phys. Rev. Lett. 89, 190402(4) (2002). [CrossRef]
  14. M. Quiroga-Teìxeìro and H. Michinel, "Stable azimuthal stationary state in quintic nonlinear optical media," J. Opt. Soc. Am. B 14, 2004-2008 (1997). [CrossRef]
  15. A. Desyatnikov, A. Maimistov, and B. A. Malomed, "Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity," Phys. Rev. E 61, 3107-3113 (2000). [CrossRef]
  16. H. Michinel, J. Campo-Táboas, M. L. Quiroga-Teixeiro, J. R. Salqueiro, and R. Gracía-Fernández, "Excitation of stable vortex solitons in nonlinear cubic-quintic materials," J. Opt. B: Quantum Semiclassical Opt. 3, 314-317 (2001). [CrossRef]
  17. V. Skarka, N. B. Aleksic, and V. I. Berezhiani, "Dynamics of electromagnetic beam with phase dislocation in saturable nonlinear media," Phys. Lett. A 291, 124-127 (2001). [CrossRef]
  18. B. A. Malomed, L.-C. Crasovan, and D. Mihalache, "Stability of vortex solitons in the cubic-quintic model," Physica D 161, 187-201 (2002). [CrossRef]
  19. T. A. Davydova, A. I. Yakimenko, and Yu. A. Zaliznyak, "Two-dimensional solitons and vortices in normal and anomalous dispersive media," Phys. Rev. E 67, 026402(5) (2003). [CrossRef]
  20. I. Towers, A. V. Buryak, R. A. Sammut, B. A. Malomed, L.-C. Crasovan, and D. Mihalache, "Stability of spinning ring solitons of the cubic-quintic nonlinear Schrödinger equation," Phys. Lett. A 288, 292-298 (2001). [CrossRef]
  21. D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, A. V. Buryak, B. A. Malomed, L. Torner, J. P. Torres, and F. Lederer, "Stable spinning optical solitons in three dimensions," Phys. Rev. Lett. 88, 073902 (2002). [CrossRef] [PubMed]
  22. C.-C. Jeng, M.-F. Shih, K. Motzek, and Yu. S. Kivshar, "Partially incoherent optical vortices in self-focusing nonlinear media," Phys. Rev. Lett. 92, 043904 (2004). [CrossRef] [PubMed]
  23. C. Anastassiou, M. Soljacic, M. Segev, E. D. Eugenieva, D. N. Christodoulides, D. Kip, Z. H. Musslimani, and J. P. Torres, "Eliminating the transverse instabilities of Kerr solitons," Phys. Rev. Lett. 85, 4888-4891 (2000). [CrossRef] [PubMed]
  24. J. P. Torres, C. Anastassiou, M. Segev, M. Soljacic, and D. N. Christodoulides, "Transverse instability of incoherent solitons in Kerr media," Phys. Rev. E 65, 015601(R) (2002). [CrossRef]
  25. M. Soljacic, M. Segev, T. Coskun, D. Christodoulides, and A. Vishwanath, "Modulation instability of incoherent beams in noninstantaneous nonlinear media," Phys. Rev. Lett. 84, 467-470 (2000). [CrossRef] [PubMed]
  26. D. Kip, M. Soljacic, M. Segev, E. Eugenieva, and D. Christodoulides, "Modulation instability and pattern formation in spatially incoherent light beams," Science 290, 495-498 (2000). [CrossRef] [PubMed]
  27. H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, "Phase singularities of the coherence functions in Young's interference pattern," Opt. Lett. 28, 968-970 (2003). [CrossRef] [PubMed]
  28. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, Jr., "Spatial correlation singularity of a vortex field," Phys. Rev. Lett. 92, 143905(4) (2004). [CrossRef] [PubMed]
  29. D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, "Theory of incoherent self-focusing in biased photorefractive media," Phys. Rev. Lett. 78, 646-649 (1997). [CrossRef]
  30. D. N. Christodoulides, E. D. Eugenieva, T. H. Coskun, M. Segev, and M. Mitchell, "Equivalence of three approaches describing partially incoherent wave propagation in inertial nonlinear media," Phys. Rev. E 63, 035601(R) (2001). [CrossRef]
  31. C. Anastassiou, C. Pigier, M. Segev, D. Kip, E. Eugenieva, and D. Christodoulides, "Self-trapping of bright rings," Opt. Lett. 26, 911-913 (2001). [CrossRef]
  32. M. Mitchell, M. Segev, T. Coskun, and D. N. Christodoulides, "Theory of self-trapped spatially incoherent light beams," Phys. Rev. Lett. 79, 4990-4993 (1997). [CrossRef]
  33. K. Motzek, A. Stepken, F. Kaiser, M. R. Belic, M. Ahles, C. Weilnau, and C. Denz, "Dipole-mode vector solitons in anisotropic photorefractive media," Opt. Commun. 197, 161-168 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited