OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 7 — Jul. 1, 2005
  • pp: 1471–1478

Properties of a laser based on evanescent-wave amplification

Vitaly V. Datsuyk, Saulius Juodkazis, and Hiroaki Misawa  »View Author Affiliations


JOSA B, Vol. 22, Issue 7, pp. 1471-1478 (2005)
http://dx.doi.org/10.1364/JOSAB.22.001471


View Full Text Article

Acrobat PDF (217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The criteria for lasing in a dielectric sphere surrounded by an active medium are given. They are presented in simple analytical form and confirmed by numeric calculations of the amplitudes of the morphology-dependent resonances in spontaneous emission spectra. The determined lasing threshold of this novel-type laser is compared with that of a conventional spherical laser with an optically active internal layer. The diverse advantages of a laser based on the gain of the evanescent part of a whispering-gallery mode are discussed.

© 2005 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3430) Lasers and laser optics : Laser theory
(260.2510) Physical optics : Fluorescence
(260.5740) Physical optics : Resonance

Citation
Vitaly V. Datsuyk, Saulius Juodkazis, and Hiroaki Misawa, "Properties of a laser based on evanescent-wave amplification," J. Opt. Soc. Am. B 22, 1471-1478 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-7-1471


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Yukawa, S. Arnold, and K. Miyano, "Microcavity effect of dyes absorbed on a levitated droplet," Phys. Rev. A 60, 2491-2496 (1999).
  2. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54, R1777-R1780 (1996).
  3. K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
  4. T. Takahashi, K. Fujiwara, S. Matsuo, and H. Misawa, "Excitation energy transfer between dye molecules in lasing microparticles," J. Photochem. Photobiol. A 120, 135-140 (1999).
  5. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," New J. Phys. 3, 14.1-14.14 (2001).
  6. V. V. Datsyuk and I. A. Izmailov, "Optics of microdroplets," Phys. Usp. 44, 1061-1073 (2001).
  7. A. N. Oraevsky, "Waves of whispering gallery," Kvant. Elektron. (Moscow) 32, 377-400 (2002).
  8. S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002).
  9. V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, "Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter," Opt. Commun. 107, 41-48 (1994).
  10. M. L. Gorodetsky and V. S. Ilchenko, "Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes," J. Opt. Soc. Am. B 16, 147-154 (1999).
  11. S. Lange and G. Scweiger, "Structural resonances in the inelastic scattering efficiency of molecules in the vicinity of spherical dielectric particles," J. Opt. Soc. Am. B 14, 1931-1937 (1997).
  12. D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Qwhispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
  13. A. N. Oraevskii, M. O. Scully, and V. L. Velichanskii, "Quantum dot laser," Quantum Electron. 28, 203-208 (1998).
  14. M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
  15. T. A. Brun and H. Wang, "Coupling nanocrystals to a high-Q silica microsphere: entanglement in quantum dots via photon exchange," Phys. Rev. A 61, 032307 (2000).
  16. X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, "Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors," Opt. Lett. 25, 1600-1602 (2000).
  17. M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinsky, and W. Langbein, "Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission," Nano Lett. 1, 309-314 (2001).
  18. L. Yang and K. J. Vahala, "Gain functionalization of silica microresonators," Opt. Lett. 28, 592-594 (2003).
  19. H. Fujiwara and K. Sasaki, "Lasing of a microsphere in dye solution," Jpn. J. Appl. Phys., Part 1 38, 5101-5104 (1999).
  20. K. An and H.-J. Moon, "Laser oscillations with pumping-independent ultrahigh cavity quality factors in evanescent-wave-coupled-gain microsphere dye lasers," J. Phys. Soc. Jpn. 72, 773-776 (2003).
  21. Y. Xu, R. K. Lee, and A. Yariv, "Quantum analysis and the classical analysis of spontaneous emission in a microcavity," Phys. Rev. A 61, 033807 (2000). [CrossRef]
  22. H. T. Dung, L. Knöll, and D.-G. Welsch, "Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity," Phys. Rev. A 62, 053804 (2000). [CrossRef]
  23. In this paper, the time dependence of the field is exp(-iomegat).
  24. S. C. Ching, H. M. Lai, and K. Young, "Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift," J. Opt. Soc. Am. B 4, 2004-2009 (1987).
  25. H. Chew, "Transition rates of atoms near spherical surfaces," J. Chem. Phys. 87, 1355-1360 (1987).
  26. G. Roll, T. Kaiser, and G. Schweiger, "Eigenmodes of spherical dielectric cavities: coupling of internal and external rays," J. Opt. Soc. Am. A 16, 882-895 (1999).
  27. H. M. Lai, P. T. Leung, and K. Young, "Electromagnetic decay into a narrow resonance in an optical cavity," Phys. Rev. A 37, 1597-1606 (1988).
  28. V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration," Phys. Rev. A 59, 2996-3014 (1999).
  29. S.-S. Yi and O. M. Stafsudd, "Observation of lossless radiative modes of a dielectric sphere," J. Appl. Phys. 86, 3684-3698 (1999).
  30. Y. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Publishing House of Siberian Branch of the Russian Academy of Sciences, 1999).
  31. W. Acker, A. Serpengüzel, R. Chang, and S. Hill, "Stimulated Raman scattering of fuel droplets. Chemical concentration and size determination," Appl. Phys. B: Photophys. Laser Chem. 51, 9-16 (1990).
  32. A. L. Huston, H.-B. Lin, J. D. Eversole, and A. J. Campillo, "Nonlinear Mie scattering: electrostrictive coupling of light to droplet acoustic modes," Opt. Lett. 15, 1176-1178 (1990).
  33. L. A. Vainshtein, Open Resonators and Open Waveguides (Golem, 1969).
  34. Yu. M. Tsipenyuk, "Probe body in open resonator," in High-Power Electronics, Issue 4, P.L.Kapitsa and L.A.Vainstein, eds. (Nauka, 1965). pp. 173-176.
  35. E. N. Alyrzaev, M. L. Gorodetsky, V. S. Ilchenko, and A. A. Savchenkov, "The measurement of low optical losses in liquids by method of immersed microsphere resonator," Vestnik MGU, Series 3, No. 5 (Moscow State University, Moscow, 2000), pp. 55-56.
  36. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonators in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
  37. G. Chen, D. Q. Chowdhury, R. K. Chang, and W.-F. Hsieh, "Laser-induced radiation leakage from microdroplets," J. Opt. Soc. Am. B 10, 620-632 (1993).
  38. J.-Z. Zhang and R. K. Chang, "Generation and suppression of stimulated Brillouin scattering in single liquid droplets," J. Opt. Soc. Am. B 6, 151-153 (1989).
  39. A. Serpenguzel, J. C. Swindal, R. K. Chang, and W. P. Acker, "Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering," Appl. Opt. 31, 3543-3551 (1992).
  40. V. E. Zuev, A. A. Zemlyanov, and Yu. D. Koputin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, 1989).
  41. Yu. A. Bykovskii, E. A. Manykin, I. E. Nakhutin, and Yu. G. Rubezhnyii, "Combination scattering of light on arbitrary vibrations of shape of a liquid spherical particle," Zh. Prikl. Spektrosk. 23, 866-871 (1975).
  42. A. S. Kwok and R. K. Chang, "Suppression of lasing by stimulated Raman scattering in microdroplets," Opt. Lett. 18, 1597-1599 (1993).
  43. H.-B. Lin, J. D. Eversole, and A. J. Campillo, "Spectral properties of lasing microdroplets," J. Opt. Soc. Am. B 9, 43-50 (1992).
  44. A. J. Campillo, J. D. Eversole, and H.-B. Lin, "Cavity quantum electrodynamic enhancement of spontaneous and stimulated emission in microdroplets," Mod. Phys. Lett. B 6, 447-457 (1992).
  45. J. R. Buck and H. J. Kimble, "Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys. Rev. A 67, 033806 (2003). [CrossRef]
  46. H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited