## Implementing a high-efficiency quantum-controlled phase gate between long-distance atoms

JOSA B, Vol. 22, Issue 7, pp. 1547-1553 (2005)

http://dx.doi.org/10.1364/JOSAB.22.001547

Acrobat PDF (317 KB)

### Abstract

We propose a scheme for the implementation of the quantum-controlled phase gate between distant atoms. Two special lasers adiabatically drive an atom trapped in a cavity that unidirectionally couples to the other cavity trapping an atom; then the phase gate between the two atoms is realized by introduction of measurement and local operations. The numerical simulations show that the quality factor of the gate operation is close to unity even if the atomic spontaneous emission is taken into account; the success probability approaches unity in principle.

© 2005 Optical Society of America

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.5580) Quantum optics : Quantum electrodynamics

**Citation**

Xiu-Min Lin, Zheng-Wei Zhou, Ming-Yong Ye, Yun-Feng Xiao, and Guang-Can Guo, "Implementing a high-efficiency quantum-controlled phase gate between long-distance atoms," J. Opt. Soc. Am. B **22**, 1547-1553 (2005)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-7-1547

Sort: Year | Journal | Reset

### References

- P. W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring," in Proceedings of 35th Annual Symposium on Foundations of Computer Science, (IEEE Computer Society Press, Piscataway, N.J., 1994), pp. 124-134.
- L. K. Grover, "Quantum mechanics helps in searching for a needle in a haystack," Phys. Rev. Lett. 79, 325-328 (1997).
- J. Preskill, "Lecture notes on quantum computation," http://www.theory.caltech.edu/people/preskill/ph229.
- T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, "Decoherence, continuous observation, and quantum computing: a cavity QED model," Phys. Rev. Lett. 75, 3788-3791 (1995).
- Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for quantum logic," Phys. Rev. Lett. 75, 4710-4713 (1995).
- A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent operation of a tunable quantum phase gate in cavity QED," Phys. Rev. Lett. 83, 5166-5169 (1999).
- J. Pachos and H. Walther, "Quantum computation with trapped ions in an optical cavity," Phys. Rev. Lett. 89, 187903 (2002). [CrossRef]
- M. S. Zubairy, M. Kim, and M. O. Scully, "Cavity-QED-based quantum phase gate," Phys. Rev. A 68, 033820 (2003). [CrossRef]
- J. K. Pachos and A. Beige, "Entangled-state preparation via dissipation-assisted adiabatic passages," Phys. Rev. A 69, 033817 (2004). [CrossRef]
- J. I. Cirac and P. Zoller, "Quantum computations with cold trapped ions," Phys. Rev. Lett. 74, 4091-4094 (1995).
- D. Kielpinski, C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature 417, 709-711 (2002).
- A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, "Speed of ion-trap quantum-information processors," Phys. Rev. A 62, 042305 (2000). [CrossRef]
- D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots," Phys. Rev. A 57, 120-126 (1998).
- N. A. Gerschenfeld and I. L. Chuang, "Bulk spin-resonance quantum computation," Science 275, 350-356 (1997).
- B. E. Kane, "A silicon-based nuclear spin quantum computer," Nature 393, 133-137 (1998).
- Y. Makhlin, G. Scohn, and A. Shnirman, "Josephson-junction qubits with controlled couplings," Nature 398, 305-307 (1999).
- E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
- C. K. Law and J. H. Eberly, "Arbitrary control of a quantum electromagnetic field," Phys. Rev. Lett. 76, 1055-1058 (1996).
- L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, and S. Haroche, "Teleportation of an atomic state between two cavities using nonlocal microwave fields," Phys. Rev. A 50, R895-R898 (1994).
- X. M. Lin, Z. W. Zhou, P. Xue, Y. J. Gu, and G. C. Guo, "Scheme for implementing quantum dense coding via cavity QED," Phys. Lett. A 313, 351-355 (2003).
- V. Giovannetti, D. Vitali, P. Tombesi, and A. Ekert, "Scalable quantum computation with cavity QED systems," Phys. Rev. A 62, 032306 (2000). [CrossRef]
- L.-M. Duan and H. J. Kimble, "Scalable photonic quantum computation through cavity-assisted interactions," Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]
- J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum state transfer and entanglement distribution among distant nodes in a quantum network," Phys. Rev. Lett. 78, 3221-3224 (1997).
- S. Clark, A. Peng, M. Gu, and S. Parkins, "Unconditional preparation of entanglement between atoms in cascaded optical cavities," Phys. Rev. Lett. 91, 177901 (2003). [CrossRef]
- A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, "Quantum-state mapping between multilevel atoms and cavity light fields," Phys. Rev. A 51, 1578-1596 (1995).
- L.-M. Duan, A. Kuzmich, and H. J. Kimble, "Cavity QED and quantum-information processing with 'hot' trapped atoms," Phys. Rev. A 67, 032305 (2003). [CrossRef]
- L.-M. Duan and H. J. Kimble, "Efficient engineering of multiatom entanglement through single-photon detections," Phys. Rev. Lett. 90, 253601 (2003). [CrossRef]
- C. W. Gardiner, Quantum Noise (Springer-Verlag, New York, 2000).
- D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Germany, 1994).
- M. Fleischhauer, S. F. Yelin, and M. D. Lukin, "How to trap photons? Storing single-photon quantum states in collective atomic excitations," Opt. Commun. 179, 395-410 (2000).
- A. Kuhn, M. Hennrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002). [CrossRef]
- T. Fischer, P. Maunz, P. W. H. Pinkse, T. Puppe, and G. Rempe, "Feedback on the motion of a single atom in an optical cavity," Phys. Rev. Lett. 88, 163002 (2002). [CrossRef]
- P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe, "Observation of cavity-mediated long-range light forces between strongly coupled atoms," Phys. Rev. Lett. 84, 4068-4071 (2000).
- M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, "Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity," Phys. Rev. Lett. 85, 4872-4875 (2000).
- P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe, "Dynamics of single-atom motion observed in a high-finesse cavity," Phys. Rev. Lett. 82, 3791-3794 (1999).
- S. Dürr and G. Rempe, "Acceptance angle for Bragg reflection of atoms from a standing light wave," Phys. Rev. A 59, 1495-1499 (1999).
- S. Dürr, T. Nonn, and G. Rempe, "Fringe visibility and which-way information in an atom interferometer," Phys. Rev. Lett. 81, 5705-5709 (1998).
- T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
- Y. Torii, Y. Suzuki, M. Kozuma, T. Sugiura, T. Kuga, L. Deng, and E. W. Hagley, "Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate," Phys. Rev. A 61, 041602 (2000). [CrossRef]
- Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, "Control of light pulse propagation with only a few cold atoms in a high-finesse Microcavity," Phys. Rev. Lett. 89, 233001 (2002). [CrossRef]
- J. Ye, D. W. Vernooy, and H. J. Kimble, "Trapping of single atoms in cavity QED," Phys. Rev. Lett. 83, 4987-4990 (1999).
- J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, "Experimental realization of a one-atom laser in the regime of strong coupling," Nature 425, 268-271 (2003).
- J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, "State-insensitive cooling and trapping of single atoms in an optical cavity," Phys. Rev. Lett. 90, 133602 (2003). [CrossRef]
- J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, "One atom yields one photon," Science 303, 1992-1994 (2004).
- L.-M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, "Scalable trapped ion quantum computation with a probabilistic ion-photon mapping," http://xxx.lanl.gov/abs/quant-ph/0401020.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.