OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 7 — Jul. 1, 2005
  • pp: 1554–1560

Blazed atom grating

Gáetan Lévêque and Renaud Mathevet  »View Author Affiliations


JOSA B, Vol. 22, Issue 7, pp. 1554-1560 (2005)
http://dx.doi.org/10.1364/JOSAB.22.001554


View Full Text Article

Acrobat PDF (361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to create a blazed atomic diffraction grating by use of a periodical optical potential. Like its optical counterpart, the blazed atomic diffraction grating distributes intensity into a specific nonzero diffraction order. Total internal reflection of a laser beam coupled to the nanostructured surface of a prism results in transverse modulation of the intensity responsible for atomic diffraction. For specific illumination parameters and periodicity of the pattern, the long-range potential interacting with the atoms has an asymmetric sawtooth shape. Analytic and numerical calculations show that population diffracted in the +1 order can be optimized to approximately 55%, with almost no population into the -1 order.

© 2005 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(050.1950) Diffraction and gratings : Diffraction gratings

Citation
Gáetan Lévêque and Renaud Mathevet, "Blazed atom grating," J. Opt. Soc. Am. B 22, 1554-1560 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-7-1554


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Davisson and L. H. Germer, "Diffraction of electrons by a crystal of nickel," Phys. Rev. 30, 705-740 (1927).
  2. J. Baudon, R. Mathevet, and J. Robert, "Atomic interferometry," J. Phys. B 32, R173-R195 (1999).
  3. P.R.Berman, ed., Atomic Interferometry (Academic, 1997).
  4. D. W. Keith, Ch. R. Ekstrom, Q. A. Turchette, and D. E. Pritchard, "An interferometer for atoms," Phys. Rev. Lett. 66, 2693-2696 (1988).
  5. V. P. Chebotayev, B. Y. Dubetsky, A. P. Kasantsev, and V. P. Yakovlev, "Interference of atoms in separated optical fields," J. Opt. Soc. Am. B 2, 1791-1798 (1985).
  6. T. Pfau, Ch. Kurtsiefer, C. S. Adams, M. Sigel, and J. Mlynek, "Magneto-optical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
  7. R. Grimm, J. Söding, and Yu. B. Ovchinnikov, "Coherent beam splitter for atoms based on a bichromatic standing light wave," Opt. Lett. 19, 658-660 (1994).
  8. K. S. Johnson, A. Chu, T. W. Lynn, K. K. Berggren, M. S. Shahriar, and M. Prentiss, "Demonstration of a nonmagnetic blazed-grating atomic beam splitter," Opt. Lett. 20, 1310-1312 (1995).
  9. B. Rohwedder, "Atom optic elements based on nearfield grating sequences," Fortschr. Phys. 47, 883-911 (1999).
  10. R. Brouri, R. Asimov, M. Gorlicki, S. Féron, J. Reinhardt, V. Lorent, and H. Haberland, "Thermal atom beam splitting by an evanescent standing wave," Opt. Commun. 124, 448-451 (1996).
  11. A. Landragin, J. Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, "Measurement of the van der Waals force in an atomic mirror," Phys. Rev. Lett. 77, 1464-1467 (1996).
  12. P. Szriftgiser, D. Guéry-Odelin, M. Arndt, and J. Dalibard, "Atomic wave diffraction and interference using temporal slits," Phys. Rev. Lett. 77, 4-7 (1996).
  13. R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, "Microscopic atom optics: from wires to an atom chip," Adv. At. Mol. Opt. Phys. 48, 263-356 (2002).
  14. G. Lévêque, C. Meier, R. Mathevet, C. Robilliard, J. Weiner, C. Girard, and J. C. Weeber, "Atomic diffraction from nanostructured optical poentials," Phys. Rev. A 65, 053615 (2002). [CrossRef]
  15. G. Lévêque, C. Meier, R. Mathevet, B. Viaris, J. Weiner, and C. Girard, "Designing experiments for the study of atom diffraction from nanostructured optical potentials," Eur. Phys. J. Appl. Phys. 20, 219-226 (2002).
  16. J. Dalibard and C. Cohen-Tannoudji, "Dressed-atom approach to atomic motion in laser light: the dipole force revisited," J. Opt. Soc. Am. B 2, 1707-1720 (1985).
  17. C. Henkel, H. Wallis, N. Westbrook, C. I. Westbrook, A. Aspect, K. Sengstock, and W. Ertmer, "Theory of atomic diffraction from evanescent waves," Appl. Phys. B 69, 277-289 (1999).
  18. G. Lévêque, "Manipulation d'atomes froids par champs optiques confinés: théorie et simulation numérique," Ph. D. thesis (Université Paul Sabatier, Toulouse, France, 2003).
  19. Jµ2(phiv)=J-µ2(phiv): M. Abramowitz and L. A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series (National Bureau of Standards1964).
  20. R. Petit, M. Cadilhac, D. Maystre, P. Vincent, and M. Nevière, Electromagnetic Theory of Gratings Vol. 22 of Topics in Current Physics (Springer-Verlag, 1980).
  21. See also J. C. Weeber, "Diffraction en champ proche optique. Analyse des images de microscopie à effet tunnel photonique," Ph.D. thesis (Université de Bourgogne, Dijon, France, 1996).
  22. R. C. Mowrey and D. J. Kouri, "Close-coupling wave packet approach to numerically exact molecule-surface scattering calculations," J. Chem. Phys. 84, 6466-6473 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited