OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 22, Iss. 7 — Jul. 1, 2005
  • pp: 1561–1565

Entanglement, teleportation, and single-photon storage with two-level atoms inside an optical parametric oscillator

Perry R. Rice  »View Author Affiliations

JOSA B, Vol. 22, Issue 7, pp. 1561-1565 (2005)

View Full Text Article

Acrobat PDF (143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



I consider several interesting aspects of a new light source, a two-level atom, or N two-level atoms inside an optical parametric oscillator. I find that in the weak driving limit, detection of a transmitted or fluorescent photon generates a highly entangled state of the atom and the cavity. This entanglement can be used with beam splitters to create more complex quantum states and implement teleportation protocols. Also, one can store a single photon in the atoms, along the lines of recent slow and stopped light proposals and experiments.

© 2005 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects

Perry R. Rice, "Entanglement, teleportation, and single-photon storage with two-level atoms inside an optical parametric oscillator," J. Opt. Soc. Am. B 22, 1561-1565 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, Cambridge, England, 2000).
  2. J. Preskill, lecture notes on quantum information, http://www.theory.caltech.edu/people/preskill/ph229/#lecture.
  3. C. Cabrillol, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller, "Creation of entangled states of distant atoms by interference," Phys. Rev. A 59, 1025-1033 (1999).
  4. B. Julsgaard, A. Kozhekin, and E. Polzik, "Experimental long-lived entanglement of two macroscopic objects," Nature (London) 413, 400-403 (2001).
  5. E. Knill, R. Laflamme, and G. Milburn, "A scheme for efficient quantum computation with linear optics," Nature (London) 409, 46-52 (2001).
  6. M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, "Cavity-loss-induced generation of entangled atoms," Phys. Rev. A 59, 2468-2475 (1999).
  7. S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, "Proposal for teleportation of an atomic state via cavity decay," Phys. Rev. Lett. 83, 5158-5161 (1999).
  8. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature (London) 414, 413-418 (2001).
  9. C. H. van der Wal, M. D. Eisaman, A. Andr, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, "Atomic memory for correlated photon states," Science 301, 196-200 (2003).
  10. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature (London) 423, 731-734 (2003).
  11. B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, "Observation of entanglement between a single trapped atom and a single ion," Nature (London) 428, 153-157 (2004).
  12. L. M. Duan and H. J. Kimble, "Efficient engineering of multiatom entanglement through single-photon detections," Phys. Rev. Lett. 90, 253601 (2003). [CrossRef]
  13. A. S. Sorensen and K. Molmer, "Probabilistic generation of entanglement in optical cavities," Phys. Rev. Lett. 90, 127903 (2003). [CrossRef]
  14. A. S. Sorensen and K. Molmer, "Measurement induced entanglement and quantum computation with atoms in optical cavities," Phys. Rev. Lett. 91, 097905 (2003). [CrossRef]
  15. C. Marr, A. Beige, and G. Rempe, "Entangled-state preparation via dissipation-assisted adiabatic passages," Phys. Rev. A 68, 033817 (2003). [CrossRef]
  16. X. Zou, K. Pahlke, and W. Mathis, "Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay," Phys. Rev. A 68, 024302 (2003). [CrossRef]
  17. A. Beige, D. Braun, B. Tregenna, and P. L. Knight, "Quantum computing using dissipation to remain in a decoherence-free subspace," Phys. Rev. Lett. 85, 1762-1765 (2000).
  18. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, "Entanglement of atomic ensembles by trapping correlated photon states," Phys. Rev. Lett. 84, 4232-4234 (2000).
  19. H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, 1993).
  20. L. Tian and H. J. Carmichael, "Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom," Phys. Rev. A 46, R6801-R6804 (1992).
  21. M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
  22. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett. 86, 783-786 (2001).
  23. P. R. Rice and R. J. Brecha, "Cavity induced transparency," Opt. Commun. 126, 230-234 (1996).
  24. C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," Am. J. Phys. 70, 37-41 (2002).
  25. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, "Coupled-resonator-induced transparency," Phys. Rev. A 69, 063804 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited