OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 8 — Aug. 1, 2005
  • pp: 1654–1659

Optical properties of perfluorocyclobutyl polymers. III. Spectroscopic characterization of rare-earth-doped perfluorocyclobutyl polymers

Jennifer Gordon, John Ballato, Dennis W. Smith Jr., and Jianyong Jin  »View Author Affiliations


JOSA B, Vol. 22, Issue 8, pp. 1654-1659 (2005)
http://dx.doi.org/10.1364/JOSAB.22.001654


View Full Text Article

Acrobat PDF (108 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a continuation of two previous studies [J. Opt. Soc. Am. B20, 1838 (2003) and J. Opt. Soc. Am. B21, 958 (2004)] on the optical characteristics of perfluorocyclobutyl-based polymers. Previously, the spectral dependences of the refractive index and the extinction coefficient have been calculated, and investigations were made into the theoretical and measured attenuation spectra of these polymers. Here, we report on the erbium-doped perfluorocyclobutyl aryl ether polymer 1,1,1-tris(4-trifluorovinyloxy)phenyl ethane. The absorption and fluorescence spectra are provided, including the Judd-Ofelt parameterization. The Judd-Ofelt parameters are found to be Omega_2 = 16.05×10^-20 cm², Omega_4 = 3.67×10^-20 cm², and Omega_6 = 3.59×10^-20 cm². These results are compared with those for a similar study on erbium-doped poly(methyl methacrylate), and conclusions are drawn concerning the effect of host properties in the 1550 nm region.

© 2005 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.2540) Materials : Fluorescent and luminescent materials
(160.4760) Materials : Optical properties
(160.5470) Materials : Polymers
(160.5690) Materials : Rare-earth-doped materials
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Citation
Jennifer Gordon, John Ballato, Dennis W. Smith Jr., and Jianyong Jin, "Optical properties of perfluorocyclobutyl polymers. III. Spectroscopic characterization of rare-earth-doped perfluorocyclobutyl polymers," J. Opt. Soc. Am. B 22, 1654-1659 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-8-1654


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, "Polymer optical fiber amplifier," Appl. Phys. Lett. 63, 883-884 (1993).
  2. T. Freeman, "Plastic optical fibre tackles automotive requirements," Fibers.org, June 14, 2004, http://fibers.iop.org/articles/news/6/6/7/1.
  3. S. Xiaohong, M. Hai, D. Ning, X. Aifang, H. Jun, Z. Qijin, Y. Min, Z. Zebo, and X. Jianping, "Using spectra analysis and scanning near-field optical microscopy to study Eu doped polymer fiber," Opt. Commun. 208, 111-115 (2002).
  4. L. R. Dalton, C. Koeppen, S. Yamada, G. Jiang, and A. F. Garito, "Rare-earth organic complexes for amplification in polymer optical fibers and waveguides," J. Opt. Soc. Am. B 14, 155-162 (1997).
  5. A. J. Kenyon, "Recent developments in rare-earth doped materials for optoelectronics," Prog. Quantum Electron. 26, 225-284 (2002).
  6. L. H. Slooff, A. Van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, "Rare-earth doped polymers for planar optical waveguides," J. Appl. Phys. 91, 3955-3980 (2002).
  7. L. Eldad and L. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
  8. P. R. Resnick and W. H. Buck, "Teflon AF amorphous fluoropolymers," in Modern Fluoropolymers, J.Scheirs, ed. (Wiley, 1997), pp. 397-419.
  9. N. Sugiyama, "Perfluoropolymers obtained by cyclopolymerization and their applications," in Modern Fluoropolymers, J.Scheirs, ed. (Wiley, 1997), pp. 541-555.
  10. D. A. Babb, B. Ezzell, K. Clement, W. Richey, and A. Kennedy, "Perfluorocyclobutane aromatic ether polymers," J. Polym. Sci. Part A Polym. Chem. 31, 3465 (1993). [CrossRef]
  11. E. Wagener, Tetramer Technologies, 657 S. Mechanic Street, Pendleton, S.C. 29670, http://www.tetramertechnologies.com (personal communication, 2003).
  12. J. Ballato, S. Foulger, and D. W. Smith, Jr., "Optical properties of perfluorocyclobutyl polymers," J. Opt. Soc. Am. B 20, 1838-1843 (2003).
  13. D. W. Smith, Jr., S. Chen, S. M. Kumar, J. Ballato, C. Topping, H. V. Shah, and S. H. Foulger, "Perfluorocyclobutyl copolymers for microphotonics," Adv. Mater. 14, 1585-1589 (2002).
  14. D. W. Smith, Jr., and D. A. Babb, "Perfluorocyclobutane aromatic polyethers. Synthesis and characterization of new siloxane-containing fluoropolymers," Macromolecules 29, 852-860 (1996).
  15. D. A. Babb, H. Boone, D. W. Smith, Jr., and P. Rudolf, "Perfluorocyclobutane aromatic ether polymers. III. Synthesis and thermal stability of a thermoset polymer containing triphenylphosphine oxide," J. Appl. Polym. Sci. 69, 2005-2012 (1998).
  16. J. Jin, J. Barden, A. R. Neilson, J. Gordon, J. Ballato, and D. W. Smith, Jr., "Trifluorovinylether functionalized semi-fluorinated lanthanides (III) complexes: synthesis and characterization," Polym. Mater. Sci. Eng. 91, 812-813 (2004).
  17. G. H. Dieke, Spectra and Energy Levels of Rare-Earth Ions in Crystals, H.M.Crosswhite and H.Crosswhite, eds. (Interscience, 1968).
  18. R. D. Peacock, The Intensities of Lanthanide f-f Transitions, Vol. 22 of Structure and Bonding (Springer-Verlag, 1975), p. 84.
  19. W. T. Carnall, P. R. Fields, and K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Hm3+," J. Chem. Phys. 49, 4424-4442 (1968).
  20. M. Dejneka, E. Snitzer, and R. E. Riman, "Blue, green, and red fluorescence and energy transfer of Eu3+ in fluoride glasses," J. Lumin. 65, 227-245 (1995).
  21. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962). [CrossRef]
  22. G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
  23. S. Tanabe, "Optical transitions of rare earth ions for amplifiers: How the local structure works in glass," J. Non-Cryst. Solids 259, 1-9 (1999).
  24. S. Tanabe, "Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication," C. R. Chim. 5, 815-824 (2002).
  25. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes, (CRC Press, 1996), p. 235.
  26. J. Ballato, S. Foulger, and D. W. Smith, Jr., "Optical properties of perfluorocyclobutyl polymers. II. Theoretical and experimental attenuation," J. Opt. Soc. Am. B 21, 958-967 (2004).
  27. R. Sosa Fonseca, M. Flores, R. Rodriguez, J. Hernandez, and A. Munoz, "Evidence of energy transfer in Er3+-doped PMMA-PAAc copolymer samples," J. Lumin. 93, 327-332 (2001).
  28. K. Kuriki, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, "Spectroscopic properties of lanthanide chelates in perfluorinated plastics for optical applications," J. Opt. Soc. Am. B 19, 1844-1848 (2002).
  29. Z. Zheng, H. Liang, H. Ming, Q. Zhang, and J. Xie, "Optical transition probability of the Er3+ Ion in Er(DBM)3 phen-doped poly(methyl methacrylate)," Opt. Commun. 233, 149-153 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited