OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 22, Iss. 8 — Aug. 1, 2005
  • pp: 1778–1784

Switching in coupled nonlinear photonic-crystal resonators

Björn Maes, Peter Bienstman, and Roel Baets  »View Author Affiliations

JOSA B, Vol. 22, Issue 8, pp. 1778-1784 (2005)

View Full Text Article

Acrobat PDF (283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using coupled-mode theory we examine the linear and Kerr nonlinear behavior of multiple consecutive photonic-crystal switches. Two types of resonators are considered, those with the cavity inside and those adjacent to the waveguide. We observe gap solitons in both structures and examine a nonlinear mode with energy localized near the boundaries of the finite system. Finally, we propose a device with two side-coupled resonators and a judiciously chosen intercavity distance that demonstrates switching at low powers. In addition to coupled-mode theory, rigorous simulations are performed for this structure.

© 2005 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.4320) Optical devices : Nonlinear optical devices

Björn Maes, Peter Bienstman, and Roel Baets, "Switching in coupled nonlinear photonic-crystal resonators," J. Opt. Soc. Am. B 22, 1778-1784 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. D. Gupta and G. S. Agarwal, "Dispersive bistability in coupled nonlinear Fabry-Perot resonators," J. Opt. Soc. Am. B 4, 691-695 (1987).
  2. H. A. Haus and Y. Lai, "Theory of cascaded quarter wave shifted distributed feedback resonators," IEEE J. Quantum Electron. 28, 205-213 (1992).
  3. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
  4. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, "Scattering-theory analysis of waveguide-resonator coupling," Phys. Rev. E 62, 7389-7404 (2000).
  5. J. E. Heebner, R. W. Boyd, and Q. H. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 19, 722-731 (2002).
  6. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in silicon-on-insulator," Opt. Express 12, 1583-1591 (2004).
  7. P. Sanchis, J. Garcia, J. Marti, W. Bogaerts, P. Dumon, D. Taillaert, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, "Experimental demonstration of high coupling efficiency between wide ridge waveguides and single-mode photonic crystal waveguides," IEEE Photonics Technol. Lett. 16, 2272-2274 (2004).
  8. S. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003).
  9. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
  10. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601 (2002). [CrossRef]
  11. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
  12. W. Chen and D. L. Mills, "Gap solitons and the nonlinear optical-response of superlattices," Phys. Rev. Lett. 58, 160-163 (1987).
  13. S. F. Mingaleev, Y. S. Kivshar, and R. A. Sammut, "Long-range interaction and nonlinear localized modes in photonic crystal waveguides," Phys. Rev. E 62, 5777-5782 (2000).
  14. S. Mookherjea and A. Yariv, "Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides," Phys. Rev. E 66, 046610 (2002). [CrossRef]
  15. S. Pereira, P. Chak, and J. E. Sipe, "Gap-soliton switching in short microresonator structures," J. Opt. Soc. Am. B 19, 2191-2202 (2002).
  16. P. Xie and Z. Q. Zhang, "Excitation of gap solitons, soliton trains, and soliton sets in finite-sized two-dimensional photonic crystals," Phys. Rev. E 69, 036601 (2004). [CrossRef]
  17. A. R. McGurn and G. Birkok, "Transmission anomalies in Kerr media photonic crystal circuits: intrinsic localized modes," Phys. Rev. B 69, 235105 (2004). [CrossRef]
  18. P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
  19. CAMFR simulation software is freely available from http://camfr.sourceforge.net/.
  20. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Phonon-polariton excitations in photonic crystals," Phys. Rev. B 68, 075209 (2003). [CrossRef]
  21. D. Pissoort, B. Denecker, P. Bienstman, F. Olyslager, and D. De Zutter, "Comparative study of three methods for the simulation of two-dimensional photonic crystals," J. Opt. Soc. Am. A 21, 2186-2195 (2004).
  22. B. Maes, P. Bienstman, and R. Baets, "Modeling of Kerr nonlinear photonic components with mode expansion," Opt. Quantum Electron. 36, 15-24 (2004).
  23. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, "Nonlinear photonic crystal microdevices for optical integration," Opt. Lett. 28, 637-639 (2003).
  24. P. Chak, J. E. Sipe, and S. Pereira, "Lorentzian model for nonlinear switching in a microresonator structure," Opt. Commun. 213, 163-171 (2002).
  25. J. E. Sipe, L. Poladian, and C. M. de Sterke, "Propagation through nonuniform grating structures," J. Opt. Soc. Am. A 11, 1307-1320 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited