OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 9 — Sep. 1, 2005
  • pp: 1899–1910

Abrasion-resistant solgel antireflective films with a high laser-induced damage threshold for inertial confinement fusion

Yao Xu, Lei Zhang, Dong Wu, Yu Han Sun, Zu Xing Huang, Xiao Dong Jiang, Xiao Feng Wei, Zhi Hong Li, Bao Zhong Dong, and Zhong Hua Wu  »View Author Affiliations


JOSA B, Vol. 22, Issue 9, pp. 1899-1910 (2005)
http://dx.doi.org/10.1364/JOSAB.22.001899


View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To prepare abrasion-resistant antireflective (AR) films for inertial confinement fusion, four solgel routes have been investigated on polysiloxane-modified and polyvinylalcohol- (PVA-) modified SiO 2 sols. As confirmed with a transmissive electron microscope, different fractal structure characteristics of the modified SiO 2 particles are disclosed by small-angle x-ray scattering technology. And it is these special fractal characteristics that determine the performance of AR films on the level of internal microstructure. A Si 29 magic angle spinning and nuclear magnetic resonance study has been successfully applied in explaining the fractal microstructure and its relation to the laser-induced damage threshold (LIDT) of AR films. The films modified by PVA120000 or acetic acid-catalyzed polysiloxane have higher LIDTs than those films modified by PVA16000 or hydrochloride acid-catalyzed polysiloxane. The films from PVA-modified SiO 2 sols have a stronger abrasion resistance but lower antireflection than those films from polysiloxane-modified SiO 2 sols. In addition, the films from polysiloxane-modified SiO 2 sols can possess high transmittance and high LIDT if the polysiloxane synthesis condition is appropriately chosen, but the abrasion resistance is not as good as that from PVA modification. If strong abrasion resistance is necessary, a possible resolution may be to choose a more appropriate hydrophilic polymer than PVA. If not, polysiloxane-modified silica sol can also work when polysiloxane is synthesized under acetic acid catalysis.

© 2005 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.6030) Materials : Silica
(160.6060) Materials : Solgel
(240.6490) Optics at surfaces : Spectroscopy, surface
(310.1210) Thin films : Antireflection coatings
(310.1620) Thin films : Interference coatings

Citation
Yao Xu, Lei Zhang, Dong Wu, Yu Han Sun, Zu Xing Huang, Xiao Dong Jiang, Xiao Feng Wei, Zhi Hong Li, Bao Zhong Dong, and Zhong Hua Wu, "Abrasion-resistant solgel antireflective films with a high laser-induced damage threshold for inertial confinement fusion," J. Opt. Soc. Am. B 22, 1899-1910 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-9-1899


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. G. Floch and P. F. Belleville, "Optical thin films from the sol-gel process," in Optical Interference Coatings, F.Abeles, ed., Proc. SPIE 2253, 764-790 (1994).
  2. D. R. Uhlmann, J. M. Boulton, G. Teowee, L. Weisenbach, and B. J. J. Zelinski, "Sol-gel synthesis of optical thin films and coatings," in Sol-Gel Optics, J.D.MacKenzie, ed., Proc. SPIE 1328, 270-294 (1990).
  3. H. G. Floch, P. F. Belleville, and P. M. Pegon, "Sol-gel optical coatings for lasers II," Am. Ceram. Soc. Bull. 74, 84-89 (1995).
  4. H. A. Mcinnes, J. E. Andrew, N. J. Bazin, A. J. Morris, and K. J. Porter, "Ultra violet laser damage and optical properties of high refractive index single layers, multiple layers and high/low index multilayer stacks," in Laser-Induced Damage in Optical Materials, G.J.Exarhos, A.H.Guenther, M.R.Kozlowski, and M.J.Soilean, eds., Proc. SPIE 3244, 500-508 (1998).
  5. W. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres on the micro size range," J. Colloid Interface Sci. 26, 62-66 (1968). [CrossRef]
  6. H. G. Floch and P. F. Belleville, "A scratch-resistant single-layer antireflective coating by a low temperature sol-gel route," in Sol-Gel Optics II, J.D.MacKenzie, ed., Proc. SPIE 1758, 135-149 (1992).
  7. P. F. Belleville and P. Prene, "A sol-gel broad band antireflective and scratch-resistant coating for megajoule-class laser amplifer blastshields," in Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W.H.Lowdermilk, ed., Proc. SPIE 3492, 230-237 (1999).
  8. P. F. Belleville, P. Prene, and B. Lambert, "A UV-cured sol-gel broadband antireflective and scratch-resistant coating for CRT," in Sol-Gel Optics V, B.S.Dunn. E.J. A.Pope, H.K.Schmidt, and M.Yamane, eds., Proc. SPIE 3943, 67-71 (2000).
  9. G. M. Wu, J. Wang, and J. Shen, "Preparation and properties of scratch-resistant nano porous broadband AR silica films derived by a two-step catalytic sol-gel process," in Fourth International Conference on Thin Film Physics and Applications, J.Chu, P.Lin, and Y.Chang, eds., Proc. SPIE 4086, 807-810 (2000).
  10. P. W. Oliveira, H. Krug, A. Frantzen, M. Mennig, and H. Schmidt, "Generation of wet-chemical AR-coating on plastic substrates by use of polymerizable nanoparticles," in Sol-Gel Optics IV, B.S.Dunn. J.D.MacKenzie, E.J. A.Pope, H.K.Schmidt, and M.Yamane, eds., Proc. SPIE 3136, 452-461 (1997).
  11. P. F. Belleville and H. G. Floch, "Ammonia hardening of porous silica antireflective coatings," in Sol-Gel Optics III, J.D.MacKenzie, ed., Proc. SPIE 2288, 25-32 (1994).
  12. H. Imai, H. Hirashima, K. Awazu, and H. Onuki, "Modification and densification of sol-gel derived silica films at low temperatures," in Sol-Gel Optics IV, B.S.Dunn. J.D.MacKenzie, E.J. A.Pope, H.K.Schmidt, and M.Yamane, eds., Proc. SPIE 3136, 144-149 (1997).
  13. H. Imai and H. Hirashima, "Structural change in sol-gel derived SiO2 films using ultraviolet irradiation," in Sol-Gel Optics III, J.D.MacKenzie, ed., Proc. SPIE 2288, 71-76 (1994).
  14. H. Hirashima, K. Adachi, and H. Imai, "Modification of sol-gel thin films by ion implantation," in Sol-Gel Optics III, J.D.MacKenzie, ed., Proc. SPIE 2288, 33-40 (1994).
  15. S. Lanux, N. Kaiser, H. Niederwald, M. Mertin, H. Ehlers, and D. Ristau, "Broadband antireflection coatings deposited with ion-assisted evaporation," in Advances in Optical Interference Coatings, C.Amra and H.A.Macleod, eds., Proc. SPIE 3738, 76-80 (1999).
  16. I. M. Thomas, "Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44," Appl. Opt. 31, 6145-6149 (1992). [CrossRef] [PubMed]
  17. C. J. Brinker and G. W. Scherer, Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing (Academic, 1990), pp. 160-173.
  18. C. Mutter, T. N. M. Bernards, M. P. J. Peeters, J. H. Lammers, and M. R. Bohmer, "The effect of the solvent on the cross-link density of SuO2 coatings," Thin Solid Films 351, 95-98 (1996). [CrossRef]
  19. Ref. , pp. 212-215.
  20. J. C. Panitz and A. Wokaun, "Characterization of the sol-gel process using Raman spectroscopy organically modified silica gels prepared via the formic acid-alkoxide route," J. Sol-Gel Sci. Technol. 9, 251-263 (1997). [CrossRef]
  21. Y. Xu, Z. H. Li, W. H. Fan, D. Wu, Y. H. Sun, L. X. Rong, and B. Z. Dong, "Density fluctuation in silica-PVA hybrid gels determined by small-angle X-ray scattering," Appl. Surf. Sci. 225, 116-123 (2004). [CrossRef]
  22. R. Zhang, Y. Xü, Q. H. Meng, J. Wang, H. Zhao, and B. Z. Dong, "Small angle x-ray scattering study of microstructure changes of organic hydrogels from supercritical carbon dioxide drying," J. Supercrit. Fluids 28, 263-276 (2004). [CrossRef]
  23. Y. Xu, Z. H. Li, W. H. Fan, D. Wu, Y. H. Sun, L. X. Rong, and B. Z. Dong, "Two fractal structures of methyl-modified silica gels by SAXS," Acta Phys. Sin. 52, 442-447 (2003).
  24. K. D. Keefer and D. W. Schaefer, "Growth of fractally rough colloids," Phys. Rev. Lett. 56, 2376-2379 (1986). [CrossRef] [PubMed]
  25. A. F. Craievich, "SAXS study of the porous fractal structure of tricalcuim silicate dry gels," J. Appl. Crystallogr. 20, 327-329 (1987). [CrossRef]
  26. C. Marliere, F. Despetis, P. Etienne, and J. Phalippou, "Two fractal structures in aerogel," J. Non-Cryst. Solids 285, 175-180 (2001). [CrossRef]
  27. D. W. Schaefer, J. E. Martin, P. Wiltzius, and D. S. Cannel, "Fractal geometry of colloidal aggregates," Phys. Rev. Lett. 52, 2371-2374 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited