OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 22, Iss. 9 — Sep. 1, 2005
  • pp: 2039–2048

Enhanced light–matter interaction in semiconductor heterostructures embedded in one-dimensional photonic crystals

Bernhard Pasenow, Matthias Reichelt, Tineke Stroucken, Torsten Meier, Stephan W. Koch, Aramis R. Zakharian, and Jerome V. Moloney  »View Author Affiliations

JOSA B, Vol. 22, Issue 9, pp. 2039-2048 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical properties of semiconductor quantum wells embedded in one-dimensional photonic crystal structures are analyzed by a self-consistent solution of Maxwell’s equations and a microscopic many-body theory of the material excitations. For a field mode spectrally below the photonic band edge it is shown that the optical absorption and gain are enhanced, exceeding by more than 1 order of magnitude the values of a homogeneous medium. For the photonic crystal structure inside a microcavity the gain increases superlinearly with the number of wells and for more than five wells exceeds the gain of a corresponding vertical-cavity surface-emitting laser.

© 2005 Optical Society of America

OCIS Codes
(000.6800) General : Theoretical physics
(130.5990) Integrated optics : Semiconductors
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

Bernhard Pasenow, Matthias Reichelt, Tineke Stroucken, Torsten Meier, Stephan W. Koch, Aramis R. Zakharian, and Jerome V. Moloney, "Enhanced light-matter interaction in semiconductor heterostructures embedded in one-dimensional photonic crystals," J. Opt. Soc. Am. B 22, 2039-2048 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific, 2004). [CrossRef]
  2. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals (Springer-Verlag, 1999). [CrossRef]
  3. W. Schäfer and M. Wegener, Semiconductor Optics and Transport Phenomena (Springer-Verlag, 2002). [CrossRef]
  4. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  5. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  6. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  7. K. Sakoda, Optical Properties of Photonic Crystals, Vol. 80 of Springer Series in Optical Sciences (Springer-Verlag, 2001). [CrossRef]
  8. C.Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century (Kluwer Academic, 2001). [CrossRef]
  9. C.M.Bowden and A.M.Zheltikov, eds., feature on nonlinear optics of photonic crystals, J. Opt. Soc. Am. B 19, 2046-2296 (2002).
  10. K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds., Photonic Crystals--Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004). [CrossRef]
  11. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, "Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths," Phys. Rev. Lett. 79, 4147-4150 (1997). [CrossRef]
  12. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75, 1036-1038 (1999). [CrossRef]
  13. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, "Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode," Appl. Phys. Lett. 78, 563-565 (2001). [CrossRef]
  14. H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, and Y. H. Lee, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001). [CrossRef]
  15. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brian, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  16. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sadaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999). [CrossRef]
  17. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. G. Park, Y. H. Lee, and D. H. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm," Appl. Phys. Lett. 76, 2982-2984 (2000). [CrossRef]
  18. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001). [CrossRef] [PubMed]
  19. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, "Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 80, 3901-3903 (2001). [CrossRef]
  20. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qui, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002). [CrossRef]
  21. S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, "Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870-3872 (2003). [CrossRef]
  22. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: a new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994). [CrossRef]
  23. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]
  24. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures," Phys. Rev. A 53, 2799-2803 (1996). [CrossRef] [PubMed]
  25. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, "Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures," Phys. Rev. A 56, 3166-3174 (1997). [CrossRef]
  26. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998). [CrossRef]
  27. M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, "Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions," Phys. Rev. E 60, 4891-4898 (1999). [CrossRef]
  28. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Meriadec, and A. Levenson, "Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length," Phys. Rev. Lett. 89, 043901 (2002). [CrossRef] [PubMed]
  29. A. Taflove, Computational Electrodynamics--The Finite Difference Time-Domain Method (Artech-House, 1995).
  30. H. Haug and S. W. Koch, "Semiconductor laser theory with many-body effects," Phys. Rev. A 39, 1887-1898 (1989). [CrossRef] [PubMed]
  31. S. Schmitt-Rink, C. Ell, and H. Haug, "Many-body effects in the absorption, gain and luminescence spectra of semiconductor quantum-well structures," Phys. Rev. B 33, 1183-1189 (1986). [CrossRef]
  32. C. Ell, R. Blank, S. Benner, and H. Haug, "Simplified calculations of the optical spectra of two-and three-dimensional laser-excited semiconductors," J. Opt. Soc. Am. B 6, 2006-2012 (1989); for the evaluation of the screened Coulomb interaction we use C=4. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited