OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 1 — Jan. 1, 2006
  • pp: 1–9

Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. I. Stimulated Raman-scattering effects

Daniel B.S. Soh, Johan Nilsson, and Anatoly B. Grudinin  »View Author Affiliations

JOSA B, Vol. 23, Issue 1, pp. 1-9 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of stimulated Raman scattering on femtosecond pulse generation using a parabolic amplifier and a grating-pair compressor are presented. We derive an explicit analytical form for the Stokes pulse evolution. We find that the evolution of the Stokes pulse can be divided into four regimes; small Gaussian Stokes pulse, small asymmetric Stokes pulse, signal depletion, and parabolic Raman pulse. To achieve efficient pulse compression, one should operate the parabolic amplifier in the small Stokes pulse regime where the signal pulse is not seriously distorted. We also derive an analytical expression to obtain a critical fiber length for the small Stokes pulse regime. The derived theory is applied to a realistic high-power femtosecond pulse generation process through a split-step Fourier numerical simulation. The pulse compression results confirm that our derived critical fiber length leads to the highest peak power and shortest width of compressed pulse.

© 2006 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:

Daniel B. Soh, Johan Nilsson, and Anatoly B. Grudinin, "Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. I. Stimulated Raman-scattering effects," J. Opt. Soc. Am. B 23, 1-9 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986). [CrossRef] [PubMed]
  2. D. J. Richardson, V. V. Afanasjev, A. B. Grudinin, and D. N. Payne, "Amplification of femtosecond pulses in a passive, all-fiber soliton source," Opt. Lett. 17, 1596-1598 (1992). [CrossRef] [PubMed]
  3. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000). [CrossRef] [PubMed]
  4. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, "Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients," Phys. Rev. Lett. 90, 113902 (2003). [CrossRef] [PubMed]
  5. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, "Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers," J. Opt. Soc. Am. B 19, 461-469 (2002). [CrossRef]
  6. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zollner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tünnermann, "High-power femtosecond Yb-doped fiber amplifier," Opt. Express 10, 628-638 (2002). [PubMed]
  7. C. Finot, G. Millot, S. Pitois, C. Billet, and J. M. Dudley, "Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers," IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004). [CrossRef]
  8. G. Chang, A. Galvanauskas, H. G. Winful, and T. B. Norris, "Dependence of parabolic pulse amplification on stimulated Raman scattering and gain bandwidth," Opt. Lett. 29, 2647-2649 (2004). [CrossRef] [PubMed]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  10. C. Headley and G. P. Agrawal, "Unified description of ultrafast stimulated Raman scattering in optical fibers," J. Opt. Soc. Am. B 13, 2170-2177 (1996). [CrossRef]
  11. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989). [CrossRef]
  12. M. Kuckartz, R. Schultz, and H. Harde, "Theoretical and experimental studies of the combined self-phase modulation and stimulated Raman-scattering in single-mode fibres," Opt. Quantum Electron. 19, 237-246 (1987). [CrossRef]
  13. J. T. Manassa, "Induced phase modulation of the stimulated Raman pulse in optical fibers," Appl. Opt. 26, 3747-3749 (1987). [CrossRef]
  14. J. T. Manassa and O. Cockings, "Time-domain characteristics of a Raman pulse in the presence of a pump," Appl. Opt. 26, 3749-3752 (1987). [CrossRef]
  15. J. Herrmann and J. Mondry, "Stimulated Raman scattering and self-phase modulation of ultrashort light pulses in optical fibres," J. Mod. Opt. 35, 1919-1932 (1988). [CrossRef]
  16. D. N. Christodoulides and R. I. Joseph, "Theory of stimulated Raman scattering in optical fibers in the pulse walk-off regime," IEEE J. Quantum Electron. 25, 273-279 (1989). [CrossRef]
  17. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, "Optical pulse compression in fiber Bragg gratings," Phys. Rev. Lett. 79, 4566-4569 (1997). [CrossRef]
  18. D. Anderson, M. Lisak, and P. Anderson, "Nonlinear enhanced chirp pulse compression in single-mode fibers," Opt. Lett. 10, 134-136 (1985). [CrossRef] [PubMed]
  19. E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. QE-5, 454-458 (1969). [CrossRef]
  20. W. J. Tomlinson and W. H. Knox, "Limits of fiber-grating optical pulse compression," J. Opt. Soc. Am. B 4, 1404-1411 (1987). [CrossRef]
  21. O. E. Martinez, "Grating and prism compressors in the case of finite beam size," J. Opt. Soc. Am. B 3, 929-934 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited