## Simple quantum model for light depolarization

JOSA B, Vol. 23, Issue 1, pp. 126-133 (2006)

http://dx.doi.org/10.1364/JOSAB.23.000126

Enhanced HTML Acrobat PDF (108 KB)

### Abstract

Depolarization of quantum fields is handled through a master equation of the Lindblad type. The specific feature of the model is that it couples the field modes to a randomly distributed atomic bath dispersively. The depolarizing dynamics emerging from this approach is analyzed for relevant states.

© 2006 Optical Society of America

**OCIS Codes**

(260.5430) Physical optics : Polarization

(270.0270) Quantum optics : Quantum optics

(270.2500) Quantum optics : Fluctuations, relaxations, and noise

**ToC Category:**

Quantum Optics

**Citation**

Andrei B. Klimov, José L. Romero, and Luis L. Sánchez-Soto, "Simple quantum model for light depolarization," J. Opt. Soc. Am. B **23**, 126-133 (2006)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-1-126

Sort: Year | Journal | Reset

### References

- A. Aspect, P. Grangier, and G. Roger, "Experimental tests of realistic local theories via Bell's theorem," Phys. Rev. Lett. 47, 460-463 (1981). [CrossRef]
- P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
- T. Tsegaye, J. Söderholm, M. Atatüre, A. Trifonov, G. Björk, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, "Experimental demonstration of three mutually orthogonal polarization states of entangled photons," Phys. Rev. Lett. 85, 5013-5017 (2000). [CrossRef] [PubMed]
- M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D'Ariano, and C. Macchiavello, "Detection of entanglement with polarized photons: experimental realization of an entanglement witness," Phys. Rev. Lett. 91, 227901 (2003). [CrossRef] [PubMed]
- J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons (Addison-Wesley, 1959).
- A. Luis and L. L. Sánchez-Soto, "Quantum phase difference, phase measurements and quantum Stokes parameters," Prog. Opt. 41, 421-481 (2000). [CrossRef]
- D. N. Klyshko, "Multiphoton interference and polarization effects," Phys. Lett. A 163, 349-355 (1992). [CrossRef]
- P. Usachev, J. Söderholm, G. Björk, and A. Trifonov, "Experimental verification of differences between classical and quantum polarization properties," Opt. Commun. 193, 161-173 (2001). [CrossRef]
- M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
- A. P. Alodjants and S. M. Arakelian, "Quantum phase measurements and non-classical polarization states of light," J. Mod. Opt. 46, 475-507 (1999).
- M. Legré, M. Wegmüller, and N. Gisin, "Quantum measurement of the degree of polarization of a light beam," Phys. Rev. Lett. 91, 167902 (2003). [CrossRef] [PubMed]
- A. B. Klimov, L. L. Sánchez-Soto, E. C. Yustas, J. Söderholm, and G. Björk, "Distance-based degrees of polarization for a quantum field," Phys. Rev. A 72, 033813 (2005). [CrossRef]
- C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
- G. A. Durkin, C. Simon, J. Eisert, and D. Bouwmeester, "Resilience of multiphoton entanglement under losses," Phys. Rev. A 70, 062305 (2004). [CrossRef]
- A. O. Caldeira and A. J. Leggett, "Influence of dissipation on quantum tunneling in macroscopic systems," Phys. Rev. Lett. 46, 211-214 (1981). [CrossRef]
- A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, "Dynamics of the dissipative two-state system," Rev. Mod. Phys. 59, 1-85 (1987). [CrossRef]
- C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
- T. Yu and J. H. Eberly, "Phonon decoherence of quantum entanglement: robust and fragile states," Phys. Rev. B 66, 193306 (2002). [CrossRef]
- S. G. Schirmer and A. I. Solomon, "Constraints on relaxation rates for N-level quantum systems," Phys. Rev. A 70, 022107 (2004). [CrossRef]
- T. Takagahara, "Theory of exciton dephasing in semiconductor quantum dots," Phys. Rev. B 60, 2638-2652 (1999). [CrossRef]
- A. V. Uskov, A. P. Jauho, B. Tromborg, J. Mørk, and R. Lang, "Dephasing times in quantum dots due to elastic LO phonon-carrier collisions," Phys. Rev. Lett. 85, 1516-1519 (2000). [CrossRef] [PubMed]
- B. Krummheuer, V. M. Axt, and T. Kuhn, "Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots," Phys. Rev. B 65, 195313 (2002). [CrossRef]
- E. Pazy, "Calculation of pure dephasing for excitons in quantum dots," Semicond. Sci. Technol. 17, 1172-1179 (2002). [CrossRef]
- Y. Makhlin, G. Schön, and A. Shnirman, "Josephson-junction qubits with controlled couplings," Nature 398, 305-307 (1999). [CrossRef]
- Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, "Coherent control of macroscopic quantum states in a single-Cooper-pair box," Nature 398, 786-788 (1999). [CrossRef]
- C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, "Quantum superposition of macroscopic persistent-current states," Science 290, 773-777 (2000). [CrossRef] [PubMed]
- J. H. Reina, L. Quiroga, and N. F. Johnson, "Decoherence of quantum registers," Phys. Rev. A 65, 032326 (2002). [CrossRef]
- V. P. Karassiov, "Polarization structure of quantum light fields: a new insight. I. General outlook," J. Phys. A 26, 4345-4354 (1993). [CrossRef]
- M. G. Raymer and A. C. Funk, "Quantum-state tomography of two-mode light using generalized rotations in phase space," Phys. Rev. A 61, 015801 (1999). [CrossRef]
- To avoid any misunderstanding, we note that what we are calling here single-mode fields are also known as two-mode fields, especially when dealing with polarization properties.
- H. Prakash and N. Chandra, "Density operator of unpolarized radiation," Phys. Rev. A 4, 796-799 (1971). [CrossRef]
- G. S. Agarwal, "On the state of unpolarized radiation," Lett. Nuovo Cimento 1, 53-56 (1971). [CrossRef]
- J. Lehner, U. Leonhardt, and H. Paul, "Unpolarized light: classical and quantum states," Phys. Rev. A 53, 2727-2735 (1996). [CrossRef] [PubMed]
- J. Söderholm, G. Björk, and A. Trifonov, "Unpolarized light in quantum optics," Opt. Spectrosc. 91, 532-534 (2001). [CrossRef]
- A. Wünsche, "Quantum-mechanical description of polarized and unpolarized light," Fortschr. Phys. 51, 262-266 (2003). [CrossRef]
- G. Lindblad, "On the generators of quantum dynamical semigroups," Commun. Math. Phys. 48, 119-130 (1976). [CrossRef]
- K. Kraus, "General state changes in quantum theory," Ann. Phys. (N.Y.) 64, 311-335 (1971). [CrossRef]
- V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, "Completely positive dynamical semigroups of N-level systems," J. Math. Phys. 17, 821-825 (1976). [CrossRef]
- M. Orszag, Quantum Optics (Springer, 2000).
- A. B. Klimov, L. L. Sánchez-Soto, A. Navarro, and E. C. Yustas, "Effective Hamiltonians in quantum optics: a systematic approach," J. Mod. Opt. 49, 2211-2226 (2002). [CrossRef]
- H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford U. Press, 2002).
- A. G. Kofman, "Absorption spectrum of an atom strongly coupled to a high-temperature reservoir," Phys. Rev. A 71, 033806 (2005). [CrossRef]
- M. Jakob and S. Stenholm, "Effects of a thermal reservoir on variational functions in open systems," Phys. Rev. A 70, 012104 (2004). [CrossRef]
- A. Galindo and M. A. Martín-Delgado, "Information and computation: classical and quantum aspects," Rev. Mod. Phys. 74, 347-423 (2002). [CrossRef]
- A. B. Klimov and L. L. Sánchez-Soto, "Method of small rotations and effective Hamiltonians in nonlinear quantum optics," Phys. Rev. A 61, 063802 (2000). [CrossRef]
- A. B. Klimov, J. L. Romero, and C. Saavedra, "General properties of quantum systems interacting with a field mode in a low-Q cavity," Phys. Rev. A 64, 063802 (2001). [CrossRef]
- A. B. Klimov, J. L. Romero, J. Delgado, and L. L. Sánchez-Soto, "Master equations for effective Hamiltonians," J. Opt. B 5, 34-39 (2003). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.