OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 1 — Jan. 1, 2006
  • pp: 149–158

Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries

Suraj P. Gorkhali, Jun Qi, and Gregory P. Crawford  »View Author Affiliations

JOSA B, Vol. 23, Issue 1, pp. 149-158 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2015 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the design, fabrication, and characterization of switchable quasi-crystal structures in holographic polymer-dispersed liquid-crystal materials using a multibeam hololithography exposure technique. By interfering multiple coherent laser beams on a liquid crystal–polymer mixture, one can create quasi-crystal morphologies on a mesoscale. The quasi-crystal structures with five-, seven-, and ninefold symmetries are confirmed by mapping of scanning electron microscope images to the calculated isointensity profiles and comparison of their diffraction patterns to the Fourier transforms of the calculated isointensity profiles. Diffraction properties and electro-optic switching parameters of the quasi-crystal samples are presented, and their refractive index modulation is estimated to be 3 × 10 3 using coupled-wave theory.

© 2006 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.2770) Diffraction and gratings : Gratings
(070.2590) Fourier optics and signal processing : ABCD transforms
(090.2890) Holography : Holographic optical elements
(090.7330) Holography : Volume gratings
(160.3710) Materials : Liquid crystals

ToC Category:
Photonic Crystals

Suraj P. Gorkhali, Jun Qi, and Gregory P. Crawford, "Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries," J. Opt. Soc. Am. B 23, 149-158 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992). [CrossRef]
  2. S. John and J. Wang, "Quantum optics of localized light in a photonic band gap," Phys. Rev. B 43, 12772-12789 (1991). [CrossRef]
  3. S. John and J. Wang, "Quantum electrodynamics near a photonic band gap--photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990). [CrossRef] [PubMed]
  4. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000). [CrossRef] [PubMed]
  5. Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998). [CrossRef]
  6. X. Zhang, Z. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105 (2001). [CrossRef]
  7. M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, "Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice," Phys. Rev. B 63, 161104 (2001). [CrossRef]
  8. J. García-Escudero, "Quasicrystal tilings with nine-fold and fifteen-fold symmetries and their Bragg spectra," J. Phys. Soc. Jpn. 67, 71-77 (1998). [CrossRef]
  9. K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, "Design of ultrawideband photonic crystals for broadband antenna applications," Electron. Lett. 30, 2166-2167 (1994). [CrossRef]
  10. M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997). [CrossRef]
  11. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  12. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003). [CrossRef]
  13. S. P. Gorkhali, J. Qi, and G. P. Crawford, "Electrically switchable mesoscale Penrose quasicrystal structure," Appl. Phys. Lett. 86, 011110 (2005). [CrossRef]
  14. G. P. Crawford, "Electrically switchable Bragg gratings," Opt. Photon. News, April 2003, pp. 54-59.
  15. M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003). [CrossRef] [PubMed]
  16. R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, "Electrically switchable Bragg gratings from liquid crystal/polymer composites," Appl. Spectrosc. 54, 12A-28A (2000). [CrossRef]
  17. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, "Holographic polymer-dispersed liquid crystals (H-PDLCs)," Annu. Rev. Mater. Sci. 30, 83-115 (2000). [CrossRef]
  18. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994). [CrossRef]
  19. R. Caputo, A. Veltri, C. Umeton, and A. V. Sukhov, "Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings," J. Opt. Soc. Am. B 22, 735-742 (2005). [CrossRef]
  20. R. Caputo, A. Veltri, C. P. Umeton, and A. V. Sukhov, "Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure," J. Opt. Soc. Am. B 21, 1939-1947 (2004). [CrossRef]
  21. A. d'Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, "Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices," Opt. Lett. 29, 1405-1407 (2004). [CrossRef] [PubMed]
  22. D. E. Lucchetta, L. Criante, and F. Simoni, "Determination of small anisotropy of holographic phase gratings," Opt. Lett. 28, 725-727 (2003). [CrossRef] [PubMed]
  23. C. C. Bowley, A. K. Fontecchio, G. P. Crawford, J. Lin, L. Li, and S. Faris, "Multiple gratings simultaneously formed in holographic polymer-dispersed liquid-crystal displays," Appl. Phys. Lett. 76, 523-525 (2000). [CrossRef]
  24. L. Z. Cai, X. L. Yang, and Y. R. Yang, "All fourteen Bravais lattices can be formed by interference of four noncoplanar beams," Opt. Lett. 27, 900-902 (2002). [CrossRef]
  25. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  26. M. J. Escuti, J. Qi, and G. P. Crawford, "Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: threshold behavior and morphology," Appl. Phys. Lett. 83, 1331-1333 (2003). [CrossRef]
  27. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and S. Chandra, "Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal," Opt. Express 10, 1074-1082 (2002). [PubMed]
  28. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002). [CrossRef]
  29. M. J. Escuti and G. P. Crawford, "Mesoscale three dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic," Mol. Cryst. Liq. Cryst. 421, 23-36 (2004). [CrossRef]
  30. K. Tanaka, K. Kato, S. Tsuru, and S. Sakai, "Holographically formed liquid-crystal/polymer device for reflective color display," J. Soc. Inf. Disp. 2, 37-40 (1994). [CrossRef]
  31. S. Yeralan, J. Gunther, D. Ritums, R. Cid, and M. Popovich, "Switchable Bragg grating devices for telecommunications applications," Opt. Eng. 41, 1774-1779 (2002). [CrossRef]
  32. D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000). [CrossRef]
  33. L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, "Holographic PDLC for photonic applications," in Liquid Crystals IV, I.-C.Khoo, ed., Proc. SPIE, 4107, 46-58 (2000).
  34. G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003). [CrossRef]
  35. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004). [CrossRef]
  36. S. T. Wu and A. Y. G. Fuh, "Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings," Jpn. J. Appl. Phys. 44, 977-980 (2005). [CrossRef]
  37. C. C. Bowley and G. P. Crawford, "Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials," Appl. Phys. Lett. 76, 2235-2237 (2000). [CrossRef]
  38. K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, "Polymer scaffolding model for holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 81, 4736-4738 (2002). [CrossRef]
  39. J. Qi, M. E. Sousa, A. K. Fontecchio, and G. P. Crawford, "Temporally multiplexed holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 82, 1652-1654 (2003). [CrossRef]
  40. D. W. Allender, G. P. Crawford, and J. W. Doane, "Determination of the liquid-crystal surface elastic constant K24," Phys. Rev. Lett. 67, 1442-1445 (1991). [CrossRef] [PubMed]
  41. G. P. Crawford, D. W. Allender, and J. W. Doane, "Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities," Phys. Rev. A 45, 8693-8708 (1992). [CrossRef] [PubMed]
  42. International Tables for Crystallography (Reidel, 1983), Vol. A, p. 179.
  43. D. Shechtman, I. Blech, D. Gratias, and J. W. Chan, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951-1953 (1984). [CrossRef]
  44. P. W. Stephens and A. I. Goldman, "Sharp diffraction maxima from an icosahedral glass," Phys. Rev. Lett. 56, 1168-1171 (1986). [CrossRef] [PubMed]
  45. P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, 1987).
  46. V. Elser, "The diffraction pattern of projected structures," Acta Crystallogr. 42, 36-43 (1986). [CrossRef]
  47. A. L. Mackay and D. N. Quinquangula, "On the pentagonal snowflake," Sov. Phys. Crystallogr. 26, 517-522 (1981).
  48. S. E. Burkov, "Structure model of the Al-Cu-Co decagonal quasicrystal," Phys. Rev. Lett. 67, 614-617 (1991). [CrossRef] [PubMed]
  49. C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999). [CrossRef]
  50. S. S. M. Cheng, L.-M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4099 (1999). [CrossRef]
  51. C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000). [CrossRef]
  52. R. C. Gauthier and K. Mnaymneh, "Photonic band gap properties of 12-fold quasi-crystal determined through FDFD analysis," Opt. Express 13, 1985-1998 (2005). [CrossRef] [PubMed]
  53. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000). [CrossRef] [PubMed]
  54. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  55. J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450 (2004). [CrossRef]
  56. M. DeSarkar, J. Qi, and G. P. Crawford, "Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings," Polymer 43, 7335-7344 (2002). [CrossRef]
  57. A. Singh, S. Ranganathan, and L. A. Bendersky, "Quasicrystalline phases and their approximants in Al-Mn-Zn alloys," Acta Mater. 45, 5327-5336 (1997). [CrossRef]
  58. J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986). [CrossRef]
  59. P. Ukleja and D. Finotello, "NMR studies of orientational order," in Liquid Crystals: Experimental Study of Physical Properties and Phase Translations, S.Kumar, ed. (Cambridge U. Press, 2001), pp. 155-196.
  60. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  61. M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Characterization of holographic polymer dispersed liquid crystal transmission gratings," J. Appl. Phys. 90, 3831-3837 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited