OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 1 — Jan. 1, 2006
  • pp: 159–167

One-dimensional anisotropic photonic crystal with a tunable bandgap

G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and M. T. Doan  »View Author Affiliations


JOSA B, Vol. 23, Issue 1, pp. 159-167 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000159


View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A one-dimensional anisotropic photonic crystal, which consists of alternating layers of an anisotropic and isotropic media, is studied by solving Maxwell’s equations using the plane-wave method. For on-axis propagation in such a one-dimensional photonic crystal, the allowed two polarizations in the anisotropic medium will experience different refractive indices and thus the degeneracy in the photonic band structure disappears. Bandgap tuning based on a liquid crystal and the Pockel effect has been investigated. For a liquid-crystal infiltrated one-dimensional photonic crystal, it is shown how the optic axis orientation of the liquid crystal affects the bandgap. The effect of rotation of the principal axes caused by an external electric field to the electro-optic tunability of the photonic crystal made of Pockel materials is also analyzed.

© 2006 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.1480) Optical devices : Bragg reflectors
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Photonic Crystals

Citation
G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and M. T. Doan, "One-dimensional anisotropic photonic crystal with a tunable bandgap," J. Opt. Soc. Am. B 23, 159-167 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-1-159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Y. Soon, J. W. Haus, M. Scalora, and C. Sibilia, "One-dimensional photonic crystal optical limiter," Opt. Express 11, 2007-2018 (2003). [CrossRef] [PubMed]
  2. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994). [CrossRef] [PubMed]
  3. T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001). [CrossRef]
  4. I. D. Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, "Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters," Opt. Express 11, 430-436 (2003). [CrossRef] [PubMed]
  5. I. Abdulhalim, "Reflective phase-only modulation using one-dimensional photonic crystals," J. Opt. 2, L9-L11 (2000). [CrossRef]
  6. A. Mandatori, C. Sibilia, M. Centini, G. D'Aguanno, M. Bertolotti, M. Scalora, M. Bloemer, and C. M. Bowden, "Birefringence in one-dimensional finite photonic bandgap structure," J. Opt. Soc. Am. B 20, 504-513 (2003). [CrossRef]
  7. K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  8. K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001). [CrossRef]
  9. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003). [CrossRef]
  10. R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, "Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer," Appl. Phys. Lett. 84, 1844-1846 (2004). [CrossRef]
  11. C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals," Appl. Phys. Lett. 79, 9-11 (2001). [CrossRef]
  12. T. H. Lin, Y. J. Chen, C. H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C. Yang, "Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett. 86, 161120 (2005). [CrossRef]
  13. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000). [CrossRef]
  14. C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001). [CrossRef]
  15. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003). [CrossRef]
  16. D. M. Pustai, A. Sharkawy, S. Shi, and D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opt. 41, 5574-5579 (2002). [CrossRef] [PubMed]
  17. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electrooptic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001). [CrossRef] [PubMed]
  18. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999). [CrossRef]
  19. H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2004). [CrossRef]
  20. H. Takeda and K. Yoshino, "Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect," Phys. Rev. E 69, 016605 (2004). [CrossRef]
  21. Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998). [CrossRef]
  22. I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993). [CrossRef]
  23. M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.
  24. D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002). [CrossRef]
  25. S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004). [CrossRef]
  26. K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  27. K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998). [CrossRef]
  28. S. Guo and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Opt. Express 11, 167-175 (2003). [CrossRef] [PubMed]
  29. S. Guo, F. Wu, S. Albin, and R. S. Rogowski, "Photonic band gap analysis using finite-difference frequency-domain method," Opt. Express 12, 1741-1746 (2004). [CrossRef] [PubMed]
  30. C. P. Yu and H. C. Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Opt. Express 12, 1397-1408 (2004). [CrossRef] [PubMed]
  31. E. Cojocaru, "Forbidden gaps in periodic anisotropic layered media," Appl. Opt. 39, 4641-4648 (2000). [CrossRef]
  32. J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995), pp. 19-20, 38-53, 65-66.
  33. J. A. Kong, Electromagnetic Wave Theory (Wiley, 1986), pp. 62-75.
  34. A. Yariv and P. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-71, 223, 227-238, 244-245.
  35. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Springer, 1995), pp. 15-16, 62-63.
  36. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995), pp. 241-243.
  37. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004). [CrossRef]
  38. D. Doroski, S. H. Perlmutter, and G. Moddel, "Alignment layers for improved surface-stabilized ferroelectric liquid-crystal devices," Appl. Opt. 33, 2608-2610 (1994). [CrossRef] [PubMed]
  39. J. L. Janning, "Thin film surface orientation for liquid crystals," Appl. Phys. Lett. 21, 173-174 (1972). [CrossRef]
  40. D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003). [CrossRef] [PubMed]
  41. K. Usami, K. Sakamoto, Y. Uehara, and S. Ushioda, "Transfer of the in-plane molecular orientation of polyimide film surface to liquid crystal monolayer," Appl. Phys. Lett. 86, 211906 (2005). [CrossRef]
  42. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996), pp. 844-846.
  43. V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.
  44. M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic properties of lithium niobate crystals for extremely high external electric fields," Appl. Phys. B 76, 403-406 (2003). [CrossRef]
  45. H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salath'e, C. A. P. Muller, and G. R. Fox, "Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating," IEEE Photon. Technol. Lett. 10, 361-363 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited