OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 1 — Jan. 1, 2006
  • pp: 81–89

Terahertz generation in Czochralski-grown periodically poled Mg : Y : LiNbO 3 by optical rectification

G. H. Ma, S. H. Tang, G. Kh. Kitaeva, and I. I. Naumova  »View Author Affiliations


JOSA B, Vol. 23, Issue 1, pp. 81-89 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000081


View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a canonical pump–probe experimental technique, we studied terahertz (THz) wave generation and detection by optical rectification and mixing in Czochralski-grown periodically poled Mg : Y : LiNbO 3 (PPLN) crystals. THz waves with frequencies at 1.37 and 0.68 THz as well as 1.8 THz were obtained for PPLN with nonlinear grating periods of 30 and 60 μ m , respectively. A general theoretical model was developed by considering the dispersion and damping of a low-frequency phonon-polariton mode. Our results show that THz waves are generated in forward and backward directions by pumping pulse rectification. The generated THz waves depend on the spectral shape of the laser pulses, quasi-phase mismatches, and dispersion characteristics of a crystal.

© 2006 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(300.6270) Spectroscopy : Spectroscopy, far infrared
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Citation
G. H. Ma, S. H. Tang, G. Kh. Kitaeva, and I. I. Naumova, "Terahertz generation in Czochralski-grown periodically poled Mg:Y:LiNbO3 by optical rectification," J. Opt. Soc. Am. B 23, 81-89 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-1-81


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Y. Han and X.-C. Zhang, "Free-space coherent broadband terahertz time-domain spectroscopy," Meas. Sci. Technol. 12, 1747-1756 (2001). [CrossRef]
  2. J. Shan, A. Nahata, and T. F. Heinz, "Terahertz time-domain spectroscopy based on nonlinear optics," J. Nonlinear Opt. Phys. Mater. 11, 31-48 (2002). [CrossRef]
  3. G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003). [CrossRef]
  4. G. C. Cho, W. Kutt, and H. Kurz, "Subpicosecond time-resolved coherent-phonon oscillations in GaAs," Phys. Rev. Lett. 65, 764-766 (1990). [CrossRef] [PubMed]
  5. B. C. Johnson, H. E. Puthoff, J. SooHoo, and S. S. Sussman, "Power and linewidth of tunable stimulated far-infrared emission in LiNbO3," Appl. Phys. Lett. 18, 181-183 (1971). [CrossRef]
  6. K. H. Yang, P. L. Richards, and Y.-R. Shen, "Generation of far-infrared radiation by picosecond light pulses in LiNbO3," Appl. Phys. Lett. 19, 320-323 (1971). [CrossRef]
  7. L. Xu, X.-C. Zhang, and D. H. Auston, "Terahertz beam generation by femtosecond optical pulses in electro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992). [CrossRef]
  8. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004). [CrossRef]
  9. A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996). [CrossRef]
  10. Y.-S. Lee, T. Meade, M. DeCamp, and T. B. Norris, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000). [CrossRef]
  11. Y.-S. Lee, T. Meade, N. Amer, and W. C. Hurlbut, "Terahertz pulse shaping via optical rectification in poled lithium niobate," Appl. Phys. Lett. 82, 170-172 (2003). [CrossRef]
  12. N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, "Terahertz polariton propagation in patterned materials," Nat. Mater. 1, 95-98 (2002). [CrossRef]
  13. D. W. Ward. J. D. Beer, T. Feurer, E. R. Statz, N. S. Stoyanov, and K. A. Nelson, "Coherent control of phonon polaritons in a terahertz resonator fabricated with femtosecond laser machining," Opt. Lett. 29, 2671-2673 (2004). [CrossRef] [PubMed]
  14. K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997). [CrossRef]
  15. K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001). [CrossRef]
  16. C. Weiss, G. Torosyan, J.-P. Meyn, R. Wallenstein, and R. Beigang, "Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate," Opt. Express 8, 497-502 (2001). [CrossRef] [PubMed]
  17. D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984). [CrossRef]
  18. N. F. Evlanova, I. I. Naumova, T. O. Chaplina, S. A. Blokhin, and S. V. Lavrishchev, "Periodically poled Y:LiNbO3 single crystal: impurity distribution and domain wall location," J. Cryst. Growth 223, 156-160 (2001). [CrossRef]
  19. I. I. Naumova, N. F. Evlanova, S. A. Blokhin, and S. V. Lavrishchev, "Correlation between impurity distribution and location of ferroelectric domain walls in Nd:Mg:LiNbO3 single crystal," J. Cryst. Growth 187, 102-106 (1998). [CrossRef]
  20. Y. L. Lu, Y. G. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, and N. B. Ming, "Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice," Appl. Phys. Lett. 68, 2642-2644 (1996). [CrossRef]
  21. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale, and M. Chiarini, "Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography," Opt. Express 11, 392-405 (2003). [CrossRef] [PubMed]
  22. J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, "Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals," Phys. Rev. Lett. 89, 047401-1-047401-4 (2002). [CrossRef]
  23. G. H. Ma, J. He, C.-H. Kang, and S. H. Tang, "Excited state dynamics studies of iron(III) phthalocyanine using femtosecond pump-probe techniques," Chem. Phys. Lett. 370, 293-299 (2003). [CrossRef]
  24. S. Smolorz and F. Wise, "Time-resolved nonlinear refraction in femtosecond laser gain media," Opt. Lett. 23, 1381-1383 (1998). [CrossRef]
  25. Y. Q. Qin, H. Su, and S. H. Tang, "Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice," Appl. Phys. Lett. 83, 1071-1073 (2003). [CrossRef]
  26. G. Kh. Kitaeva and A. N. Penin, "Diagnostics of the inhomogeneous distribution of quadratic optical susceptibility over parametric scattering spectra," Quantum Electron. 34, 597-611 (2004). [CrossRef]
  27. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 8, pp. 110-116.
  28. D. H. Auston, "Subpicosecond electro-optic shock waves," Appl. Phys. Lett. 43, 713-715 (1983). [CrossRef]
  29. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and P. R. Smith, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984). [CrossRef]
  30. D. H. Auston and M. C. Nuss, "Electrooptical generation and detection of femtosecond electrical transients," IEEE J. Quantum Electron. 24, 184-197 (1988). [CrossRef]
  31. G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001). [CrossRef]
  32. T. Qiu and M. Maier, "Long-distance propagation and damping of low-frequency phonon polaritons in LiNbO3," Phys. Rev. B 56, R5717-R5720 (1997). [CrossRef]
  33. U. T. Schwarz and M. Maier, "Frequency dependence of phonon-polariton damping in lithium niobate," Phys. Rev. B 53, 5074-5077 (1996). [CrossRef]
  34. G. Kh. Kitaeva, A. A. Mikhailovsky, I. I. Naumova, A. A. Mikhailovsky, and A. N. Penin, "Visible and infrared dispersion of the refractive indices in periodically poled and single domain Nd:Mg:LiNbO3 crystals," Appl. Phys. B 66, 201-205 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited