OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 10 — Oct. 1, 2006
  • pp: 2046–2050

Design and fabrication of two-dimensional holographic photonic quasi crystals with high-order symmetries

Weidong Mao, Guanquan Liang, Hui Zou, Rui Zhang, Hezhou Wang, and Zhaohua Zeng  »View Author Affiliations

JOSA B, Vol. 23, Issue 10, pp. 2046-2050 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



From group theory, we have deduced the minimum number of laser beams to create corresponding two-dimensional photonic quasilattices with high-order symmetries. One case is that a quasi-periodicity with eightfold, tenfold, or twelvefold symmetry can be formed by only five linearly polarized beams, which can reduce fabrication complexity and considerably improve feasibility. Accordingly, we have fabricated large-area eightfold and twelvefold photonic quasi crystals by use of a minimum beam single-exposure holographic lithography technique. The high-order symmetries of the fabricated microstructures are confirmed by scanning electron microscopy images and diffraction patterns.

© 2006 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(160.2900) Materials : Optical storage materials
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:

Original Manuscript: March 17, 2006
Manuscript Accepted: May 28, 2006

Weidong Mao, Guanquan Liang, Hui Zou, Rui Zhang, Hezhou Wang, and Zhaohua Zeng, "Design and fabrication of two-dimensional holographic photonic quasi crystals with high-order symmetries," J. Opt. Soc. Am. B 23, 2046-2050 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951-1954 (1984). [CrossRef]
  2. D. Levine and P. J. Steinhardt, "Quasicrystals: a new class of ordered structures," Phys. Rev. Lett. 53, 2477-2480 (1984). [CrossRef]
  3. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  4. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  5. Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-969 (1998). [CrossRef]
  6. S. S. M. Cheng, L. M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4099 (1999). [CrossRef]
  7. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000). [CrossRef] [PubMed]
  8. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, "Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice," Phys. Rev. Lett. 94, 183903 (2005). [CrossRef] [PubMed]
  9. W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 436, 993-996 (2005). [CrossRef] [PubMed]
  10. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004). [CrossRef] [PubMed]
  11. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000). [CrossRef] [PubMed]
  12. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  13. W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, "Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography," Opt. Express 13, 2994-2999 (2005). [CrossRef] [PubMed]
  14. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. VonFreymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003). [CrossRef]
  15. Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, and Y. L. Chen, "Photonic crystal with diamondlike structure fabricated by holographic lithography," Appl. Phys. Lett. 87, 061103 (2005). [CrossRef]
  16. W. D. Mao, G. Q. Liang, H. Zou, and H. Z. Wang, "Controllable fabrication of two-dimensional compound photonic crystals by single-exposure holographic lithography," Opt. Lett. 31, 1708-1710 (2006). [CrossRef] [PubMed]
  17. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasicrystals," Adv. Mater. (Weinheim, Ger.) 15, 1526-1528 (2003). [CrossRef]
  18. R. C. Gauthier and A. Ivanov, "Production of quasi-crystal template patterns using a dual beam multiple exposure technique," Opt. Express 12, 990-1003 (2004). [CrossRef] [PubMed]
  19. S. P. Gorkhali, J. Qi, and G. P. Crawford, "Electrically switchable mesoscale Penrose quasicrystal structure," Appl. Phys. Lett. 86, 011110 (2005). [CrossRef]
  20. X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, "Realization of optical periodic quasicrystals using holographic lithography," Appl. Phys. Lett. 88, 051901 (2006). [CrossRef]
  21. D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright, "The space groups of axial crystals and quasicrystals," Rev. Mod. Phys. 63, 699-733 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited