OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 10 — Oct. 1, 2006
  • pp: 2097–2106

Thermal lens and Auger upconversion losses’ effect on the efficiency of Nd 3 + -doped lead lanthanum zirconate titanate transparent ceramics

Andrea S. S. de Camargo, Carlos Jacinto, Tomaz Catunda, Luiz Antonio de O. Nunes, Ducinei Garcia, and José Antonio Eiras  »View Author Affiliations

JOSA B, Vol. 23, Issue 10, pp. 2097-2106 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A thorough investigation of optical losses for the 1064 nm emission in Nd 3 + -doped lead lanthanum zirconate titanate (PLZT) transparent ceramics is presented. Thermal lens experiments were carried out to evaluate thermo-optical properties and the fluorescence quantum efficiency of the emitting level F 3 2 4 . Excited-state absorption losses were measured in the emitting wavelength region, and the Auger upconversion energy transfer parameter γ was calculated. By using γ, the pump-intensity dependence of the optical gain at 1064 nm , the fluorescence quantum efficiency, and the generation of heat in the ceramic were simulated for a high 803 nm pump-power regime. Since the radiative and nonradiative losses in Nd : PLZT were verified to be considerably lower than in various commercial laser crystals and glasses, it is suggested that this material might become an interesting alternative for high-power laser emission.

© 2006 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.7220) Nonlinear optics : Upconversion
(260.2160) Physical optics : Energy transfer

ToC Category:

Original Manuscript: August 15, 2005
Revised Manuscript: June 15, 2006
Manuscript Accepted: June 16, 2006

Andrea S. S. de Camargo, Carlos Jacinto, Tomaz Catunda, Luiz Antonio de O. Nunes, Ducinei Garcia, and José Antonio Eiras, "Thermal lens and Auger upconversion losses' effect on the efficiency of Nd3+-doped lead lanthanum zirconate titanate transparent ceramics," J. Opt. Soc. Am. B 23, 2097-2106 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic lasers: ready for action," Photonics Spectra 38, 1-8 (2004).
  2. V. Lupei, A. Lupei, and A. Ikesue, "Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials," Appl. Phys. Lett. 86, 111118 (2005). [CrossRef]
  3. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002). [CrossRef]
  4. V. Lupei, "Efficiency enhancement and power scaling of Nd lasers," Opt. Mater. 24, 353-368 (2003), and references therein. [CrossRef]
  5. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004). [CrossRef]
  6. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005). [CrossRef]
  7. D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, "Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping," Opt. Express 13, 6212-6216 (2005). [CrossRef] [PubMed]
  8. S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein. [CrossRef]
  9. C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. Myers, and M. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005), and references therein. [CrossRef] [PubMed]
  10. V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, "Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals," J. Opt. Soc. Am. B 15, 1052-1060 (1998). [CrossRef]
  11. A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, "Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission," Appl. Phys. Lett. 86, 152905 (2005). [CrossRef]
  12. S. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, "Auger upconversion losses in Nd-doped laser glasses," Opt. Commun. 111, 263-268 (1994). [CrossRef]
  13. J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, "Excited-state absorption and up-conversion losses in Nd-doped glasses for high-power lasers," Phys. Rev. B 62, 4459 (2000), and references therein. [CrossRef]
  14. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-inversion densities in Nd:YAG: Upconversion and bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998). [CrossRef]
  15. L. Palatella, F. Cornacchia, A. Toncelli, and M. Tonelli, "Microscopic treatment of upconversion in Nd3+-doped samples," J. Opt. Soc. Am. B 20, 1708-1714 (2003). [CrossRef]
  16. I. Iparraguirre, R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, "Infrared-to-visible upconversion in K5Nd(MoO4)4 stoichiometric laser crystal," J. Opt. Soc. Am. B 19, 2911-2920 (2002). [CrossRef]
  17. A. S. S. de Camargo, L. A. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, "Structural and spectroscopic properties of rare-earth (Nd3+,Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics," J. Appl. Phys. 95, 2135-2140 (2004). [CrossRef]
  18. G. H. Haertling, "Ferroelectric ceramics: history and technology," J. Am. Ceram. Soc. 82, 797-818 (1999). [CrossRef]
  19. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, "Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review," J. Non-Cryst. Solids 273, 215-227 (2000), and references therein. [CrossRef]
  20. M. L. Baesso, J. Shen, and R. Snook, "Mode-mismatched thermal lens determination of temperature-coefficient of optical-path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994). [CrossRef]
  21. S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002). [CrossRef]
  22. C. Jacinto, T. Catunda, D. Jaque, and J. García-Solé, "Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4," Phys. Rev. B 72, 235111 (2005). [CrossRef]
  23. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, "Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3+-doped glasses," Phys. Rev. B 73, 125107 (2006). [CrossRef]
  24. T. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," Ann. Phys. (N.Y.) 2, 55-75 (1948). [CrossRef]
  25. D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953). [CrossRef]
  26. A. I. Burshtein, "Hoping mechanism of energy transfer," Sov. Phys. JETP 35, 882-885 (1972).
  27. R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998). [CrossRef]
  28. M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967). [CrossRef]
  29. I. R. Martin, V. D. Rodriguez, U. R. Rodríguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, "Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction," J. Chem. Phys. 111, 1191-1194 (1999). [CrossRef]
  30. C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005). [CrossRef]
  31. J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross-sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995). [CrossRef]
  32. J. H. Campbell and T. I. Suratwala, "Nd-doped phosphate glasses for high-energy/high-peak-power lasers," J. Non-Cryst. Solids 263, 318-341 (2000). [CrossRef]
  33. S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001). [CrossRef]
  34. A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, "Thermal lens determination of the temperature coefficient of optical path length in optical materials," Rev. Sci. Instrum. 74, 877-880 (2003). [CrossRef]
  35. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962). [CrossRef]
  36. G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962). [CrossRef]
  37. W. F. Krupke, "Radiative transition probabilities within the 4f2 ground configuration of Nd:YAG," IEEE J. Quantum Electron. QE-7, 153-159 (1971). [CrossRef]
  38. V. Lupei, A. Lupei, N. Pavel, T. Taira, L. Shoji, and A. Ikesue, "Laser emission under resonat pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001). [CrossRef]
  39. V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001). [CrossRef]
  40. W. Köechner, Solid-State Laser Engineering (Springer-Verlag, 1988).
  41. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited