OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 10 — Oct. 1, 2006
  • pp: 2121–2126

Formation of photovoltaic bright spatial soliton in photorefractive LiNbO 3 crystal by a defocused laser beam induced by a background laser beam

Wei-Long She, Chi-Cheng Xu, Bin Guo, and Wing-Kee Lee  »View Author Affiliations


JOSA B, Vol. 23, Issue 10, pp. 2121-2126 (2006)
http://dx.doi.org/10.1364/JOSAB.23.002121


View Full Text Article

Enhanced HTML    Acrobat PDF (188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have shown, for the first time to our knowledge, both theoretically and experimentally that a bright photovoltaic (PV) spatial soliton (SS) can be formed in a photorefractive crystal with large Glass constant and negative refractive index perturbation, provided that the Glass constant of the background beam is larger than that of the self-trapped (signal) beam. The ratio of the effective Glass constants of the self-trapped beam and the background beam is the key parameter that determines whether the PV SS is bright or dark. We have demonstrated experimentally that bright SSs can be formed in LiNbO 3 crystals using all four combinations of polarizations of the signal beam and the background beam.

© 2006 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5330) Nonlinear optics : Photorefractive optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 11, 2006
Revised Manuscript: May 9, 2006
Manuscript Accepted: May 16, 2006

Citation
Wei-Long She, Chi-Cheng Xu, Bin Guo, and Wing-Kee Lee, "Formation of photovoltaic bright spatial soliton in photorefractive LiNbO3 crystal by a defocused laser beam induced by a background laser beam," J. Opt. Soc. Am. B 23, 2121-2126 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-10-2121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, "Observation of spatial optical solitons in a nonlinear glass waveguide," Opt. Lett. 15, 471-473 (1990). [CrossRef] [PubMed]
  2. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979). [CrossRef]
  3. G. C. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, and E. Sharp, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993). [CrossRef] [PubMed]
  4. T. T. Shi and S. Chi, "Nonlinear photonic switching by using the spatial soliton collision," Opt. Lett. 15, 1123-1125 (1990). [CrossRef] [PubMed]
  5. M. Shalaby and A. Barthelemy, "Experimental spatial soliton trapping and switching," Opt. Lett. 16, 1472-1474 (1991). [CrossRef] [PubMed]
  6. M. Segev, B. Crosignani, A. Yariv, and B. Fisher, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992). [CrossRef] [PubMed]
  7. J. Maufoy, N. Fressengeas, D. Wolfersberger, and G. Kugel, "Simulation of the temporal behavior of soliton propagation in photorefractive media," Phys. Rev. E 59, 6116-6121 (1999). [CrossRef]
  8. G. Duree, M. Morin, G. Salamo, M. Segev, A. Yariv, B. Crosignani, and P. DiPorto, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995). [CrossRef] [PubMed]
  9. M. D. I. Castillo, P. A. Aguillar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vyloukh, "Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity," Appl. Phys. Lett. 64, 408-410 (1994). [CrossRef]
  10. M. Shih, P. Leach, M. Segev, M. H. Garret, G. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996). [CrossRef] [PubMed]
  11. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external field," Phys. Rev. Lett. 73, 3211-3214 (1994). [CrossRef] [PubMed]
  12. M. Segev, M. F. Shih, and G. C. Valley, "Photorefractive screening solitons of high and low intensity," J. Opt. Soc. Am. B 13, 706-718 (1996). [CrossRef]
  13. D. N. Christodoulides and M. I. Carvalho, "Bright, dark, and gray spatial soliton states in photorefractive media," J. Opt. Soc. Am. B 12, 1628-1633 (1995). [CrossRef]
  14. K. Kos, H. Ming, and G. Salamo, "One-dimensional steady-state photorefractive screening solitons," Phys. Rev. E 53, R4330-4333 (1996). [CrossRef]
  15. R. Ryf, M. Wiki, G. Montemezzani, P. Günter, and A. A. Zozulya, "Launching one-transverse-dimensional photorefractive solitons in KNbO3 crystals," Opt. Commun. 159, 339-348 (1999). [CrossRef]
  16. M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997). [CrossRef]
  17. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994). [CrossRef] [PubMed]
  18. M. Taya, M. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons," Phys. Rev. A 52, 3095-3100 (1995). [CrossRef] [PubMed]
  19. W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999). [CrossRef]
  20. D. N. Christodoulides and T. H. Coskun, "Theory of incoherent self-focusing in biased photorefractive media," Phys. Rev. Lett. 78, 646-649 (1997). [CrossRef]
  21. M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997). [CrossRef]
  22. M. Mitchell, Z. Chen, M. F. Shih, and M. Segev, "Self-trapping of partially spatially incoherent light," Phys. Rev. Lett. 77, 490-493 (1996). [CrossRef] [PubMed]
  23. Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, "Self-trapping of dark incoherent light beams," Science 280, 889-892 (1998). [CrossRef] [PubMed]
  24. C. Anastassiou, M. Shih, M. Mitchell, Z. Chen, and M. Segev, "Optically induced photovoltaic self-defocusing-to-self-focusing transition," Opt. Lett. 23, 924-926 (1998). [CrossRef]
  25. A. M. Glass, D. Von der Linde, and T. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974). [CrossRef]
  26. The 594nm laser beam from a He-Ne laser was too weak to allow the measurement of the Glass constant. The value of R found by extrapolation is 1.9.
  27. To avoid any residual Delta n induced by the SB during optical alignment processes.
  28. We have also checked the SB size near the output face by scanning a razor blade across the SB at a position ∼0.1mm from the output face and monitored the signal intensity at the far field by a photodiode. The beam size of a SS deduced by this method is consistent with the value shown in Fig.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited