OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 10 — Oct. 1, 2006
  • pp: 2148–2156

Bias level dependence of turn-off oscillations in vertical-cavity surface-emitting lasers

Angel Valle and Luis Pesquera  »View Author Affiliations

JOSA B, Vol. 23, Issue 10, pp. 2148-2156 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Turn-off oscillations are dynamical phenomena that appear when modulating the current applied to vertical-cavity surface-emitting lasers (VCSELs). These phenomena consist of the generation of significant pulsed optical power, while the laser current remains at the lowest (bias) value during the modulation. We study the dependence of turn-off oscillations on the bias current for both single-mode and multitransverse-mode VCSELs. We show that as the bias current increases, the maximum power of these oscillations obtained with multimode lasers becomes similar to the one obtained with single-mode lasers. A criterion for obtaining the bias current above which turn-off oscillations are no longer dominated by spatial effects is given. We also show that the transverse spatial profile of the light emitted in multimode VCSELs during turn-off oscillations depends on the value of the bias current.

© 2006 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:

Original Manuscript: January 31, 2006
Revised Manuscript: June 22, 2006
Manuscript Accepted: June 27, 2006

Angel Valle and Luis Pesquera, "Bias level dependence of turn-off oscillations in vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 23, 2148-2156 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Iga, "Surface-emitting laser—its birth and generation of new optoelectronics field," IEEE J. Sel. Top. Quantum Electron. 6, 1201-1215 (2000). [CrossRef]
  2. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization and transverse mode characteristics of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991). [CrossRef]
  3. D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993). [CrossRef]
  4. J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000). [CrossRef]
  5. J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997). [CrossRef]
  6. A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 12, 1741-1746 (1995). [CrossRef]
  7. D. S. Smith, "Characterizing VCSELs for high-speed interconnects," in NIST Symposium on High Speed Optical Interconnects, Boulder, Colorado (National Institute of Standards and Technology, 1995).
  8. J. K. Guenter and J. Tatum, "Modulating VCSELs," Application Sheet, Advanced Optical Components, http://www.adopco.com/publication/documents/ModulatingVCSELs.pdf.
  9. J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Low Temp. Phys. 17, 95-101 (1999).
  10. J. A. Lehman and R. A. Morgan, "850 nm VCSELs for high speed data communication applications," in Vertical-Cavity Surface-Emitting Lasers: Technology and Applications (CRC Press, 2000), p. 133.
  11. M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, "Electrically steerable lasers using wide aperture VCSELs," IEEE Photon. Technol. Lett. 13, 544-546 (2001). [CrossRef]
  12. A. Hsu, S. L. Chuang, E. Borisch, K. P. Jackson, and S. Kerchberger, "Bias dependence of mode dynamics in a vertical-cavity surface-emitting laser," IEE Proc.: Optoelectron. 151, 138-142 (2004). [CrossRef]
  13. A. Valle and L. Pesquera, "Turn-off transients in current-modulated vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001). [CrossRef]
  14. A. Valle, J. Mulet, L. Pesquera, and S. Balle, "Diffusive turn-off transients in current modulated multitransverse mode VCSELs," in Proc. SPIE 4649, 50-61 (2002). [CrossRef]
  15. J. Mulet and S. Balle, "Transverse mode dynamics in vertical-cavity surface-emitting lasers: spatio-temporal versus modal expansion description," Phys. Rev. A 66, 053802 (2002). [CrossRef]
  16. J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002). [CrossRef]
  17. M. X. Jungo, D. Erni, and W. Bachtold, "VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model," IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003). [CrossRef]
  18. C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005). [CrossRef]
  19. A. Valle and L. Pesquera, "Bit error rate performance of vertical-cavity surface-emitting lasers modulated at high speed," in Proc. SPIE 5453, 258-269 (2004). [CrossRef]
  20. A. Valle, J. Sarma, and K. A. Shore, "Spatial hole burning effects in the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995). [CrossRef]
  21. A. Valle, "Selection and modulation of high order transverse modes in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 34, 1924-1932 (1998). [CrossRef]
  22. K. J. Ebeling, "Analysis of vertical cavity surface emitting laser diodes," in Semiconductor Quantum Optoelectronics: from Quantum Physics to Smart Devices (SUSSP and Institute of Physics, 1999), p. 312.
  23. A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical-cavity surface-emitting laser diodes," Opt. Commun. 115, 297-302 (1995). [CrossRef]
  24. K. D. Choquette and R. E. Leibenguth, "Control of vertical-cavity polarization with anisotropic transverse geometries," IEEE Photon. Technol. Lett. 6, 40-42 (1994). [CrossRef]
  25. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of VCSELs using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 1, 667-673 (1995). [CrossRef]
  26. H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999). [CrossRef]
  27. H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, "Large-area single-mode VCSELs and the self-aligned surface relief," IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited