OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 10 — Oct. 1, 2006
  • pp: 2217–2222

Two-dimensional phase resolution of frequency-resolved optical gating across the midinfrared

S. D. McGrane, R. J. Scharff, and J. Barber  »View Author Affiliations

JOSA B, Vol. 23, Issue 10, pp. 2217-2222 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectrally and temporally heterodyned four-wave mixing (FWM) signals in silver thiogallate are reported over a wavelength range of 3 10 μ m . We (1) expose the usefulness of the strong nonresonant FWM in optimizing an apparatus for heterodyned 2D infrared experiments and (2) use heterodyning to measure the 2D phase of a frequency-resolved optical gating (FROG) signal. We report the phase of the 2D FROG signal, as opposed to the 1D phase of the excitation pulses routinely determined from conventional FROG analysis. The 2D FROG phase complements the 2D FROG magnitude in providing intuitive visual analysis of the spectral and temporal phases of femtosecond pulses.

© 2006 Optical Society of America

OCIS Codes
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Ultrafast Optics

Original Manuscript: February 7, 2006
Revised Manuscript: June 20, 2006
Manuscript Accepted: June 24, 2006

S. D. McGrane, R. J. Scharff, and J. Barber, "Two-dimensional phase resolution of frequency-resolved optical gating across the midinfrared," J. Opt. Soc. Am. B 23, 2217-2222 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Wright, "Coherent multidimensional vibrational spectroscopy," Int. Rev. Phys. Chem. 21, 185-255 (2002). [CrossRef]
  2. J. B. Asbury, T. Steinel, and M. D. Fayer, "Hydrogen bond networks: structure and evolution after hydrogen bond breaking," J. Phys. Chem. B 108, 6544-6554 (2004). [CrossRef]
  3. J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, "Ultrafast heterodyne detected infrared multidimensional vibrational stimulated echo studies of hydrogen bond dynamics," Chem. Phys. Lett. 374, 362-371 (2003). [CrossRef]
  4. J. Bredenbeck, J. Helbing, R. Behrendt, C. Renner, L. Moroder, J. Wachtveitl, and P. Hamm, "Transient 2D-IR spectroscopy: snapshots of the nonequilibrium ensemble during the picosecond conformational transition of a small peptide," J. Phys. Chem. B 107, 8654-8660 (2003). [CrossRef]
  5. J. Bredenbeck, J. Helbing, and P. Hamm, "Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer," J. Am. Chem. Soc. 126, 990-991 (2004). [CrossRef] [PubMed]
  6. J. Edler and P. Hamm, "Spectral response of crystalline acetanilide and N-methylacetamide: vibrational self-trapping in hydrogen-bonded crystals," Phys. Rev. B 69, 214301 (2004). [CrossRef]
  7. J. Edler, R. Pfister, V. Pouthier, C. Falvo, and P. Hamm, "Direct observation of self-trapped vibrational states in α-helices," Phys. Rev. Lett. 93, 106405 (2004). [CrossRef] [PubMed]
  8. E. C. Fulmer, F. Ding, P. Mukherjee, and M. T. Zanni, "Vibrational dynamics of ions in glass from fifth-order two-dimensional infrared spectroscopy," Phys. Rev. Lett. 94, 067402 (2005). [CrossRef] [PubMed]
  9. E. C. Fulmer, P. Mukherjee, A. T. Krummel, and M. T. Zanni, "A pulse sequence for directly measuring the anharmonicities of coupled vibrations: two-quantum two-dimensional infrared spectroscopy," J. Chem. Phys. 120, 8067-8078 (2004). [CrossRef] [PubMed]
  10. N. H. Ge and R. M. Hochstrasser, "Femtosecond two-dimensional infrared spectroscopy: IR-COSY and THIRSTY," PhysChemComm 5, 17-26 (2002). [CrossRef]
  11. N. H. Ge, M. T. Zanni, and R. M. Hochstrasser, "Effects of vibrational frequency correlations on two-dimensional infrared spectra," J. Phys. Chem. A 106, 962-972 (2002). [CrossRef]
  12. P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, "Pump/probe self heterodyned 2D spectroscopy of vibrational transitions of a small globular peptide," J. Chem. Phys. 112, 1907-1916 (2000). [CrossRef]
  13. D. M. Jonas, "Two-dimensional femtosecond spectroscopy," Annu. Rev. Phys. Chem. 54, 425-425 (2003). [CrossRef] [PubMed]
  14. M. Khalil, N. Demirdoven, and A. Tokmakoff, "Coherent 2D IR spectroscopy: molecular structure and dynamics in solution," J. Phys. Chem. A 107, 5258-5279(2003). [CrossRef]
  15. M. Khalil, N. Demirdoven, and A. Tokmakoff, "Vibrational coherence transfer characterized with Fourier-transform 2D IR spectroscopy," J. Chem. Phys. 121, 362-373 (2004). [CrossRef] [PubMed]
  16. Y. S. Kim and R. M. Hochstrasser, "Chemical exchange 2D IR of hydrogen-bond making and breaking," Proc. Natl. Acad. Sci. U.S.A. 102, 11185-11190 (2005). [CrossRef] [PubMed]
  17. Y. S. Kim, J. P. Wang, and R. M. Hochstrasser, "The 2D IR spectroscopy of the alanine dipeptide in aqueous solution," J. Phys. Chem. B 109, 7511-7521 (2005). [CrossRef]
  18. B. L. McClain, I. J. Finkelstein, and M. D. Fayer, "Vibrational echo experiments on red blood cells: comparison of the dynamics of cytoplasmic and aqueous hemoglobin," Chem. Phys. Lett. 392, 324-329 (2004). [CrossRef]
  19. K. A. Merchant, D. E. Thompson, and M. D. Fayer, "Two-dimensional time-frequency ultrafast infrared vibrational echo spectroscopy," Phys. Rev. Lett. 86, 3899-3902 (2001). [CrossRef] [PubMed]
  20. I. V. Rubtsov, K. Kumar, and R. M. Hochstrasser, "Dual-frequency 2D IR photon echo of a hydrogen bond," Chem. Phys. Lett. 402, 439-439 (2005). [CrossRef]
  21. S. Woutersen and P. Hamm, "Time-resolved two-dimensional vibrational spectroscopy of a short α-helix in water," J. Chem. Phys. 115, 7737-7743 (2001). [CrossRef]
  22. M. T. Zanni, M. C. Asplund, and R. M. Hochstrasser, "Two-dimensional heterodyned and stimulated infrared photon echoes of N-methylacetamide-D," J. Chem. Phys. 114, 4579-4590 (2001). [CrossRef]
  23. M. T. Zanni, N. H. Ge, Y. S. Kim, and R. M. Hochstrasser, "Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination," Proc. Natl. Acad. Sci. U.S.A. 98, 11265-11270 (2001). [CrossRef] [PubMed]
  24. J. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, "Physics: ultrafast dynamics of solute-solvent complexation observed at thermal equilibrium in real time," Science 309, 1338-1343 (2005). [CrossRef] [PubMed]
  25. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997). [CrossRef]
  26. I. Amat-Roldan, L. G. Cormack, P. Loza-Alvarez, and D. Artigas, "Measurement of electric field by interferometric spectral trace observation," Opt. Lett. 30, 1063-1065 (2005). [CrossRef] [PubMed]
  27. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbugel, K. W. DeLong, R. Trebino, and I. A. Walmsley, "Measurement of the intensity and phase of ultraweak, ultrashort laser pulses," Opt. Lett. 21, 884-884 (1996). [CrossRef] [PubMed]
  28. C. W. Siders, J. L. W. Siders, F. G. Omenetto, and A. J. Taylor, "Multipulse interferometric frequency-resolved optical gating," IEEE J. Quantum Electron. 35, 432-440 (1999). [CrossRef]
  29. G. Stibenz and G. Steinmeyer, "Interferometric frequency-resolved optical gating," Opt. Express 13, 2617-2626 (2005). [CrossRef] [PubMed]
  30. S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, "Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation," Opt. Lett. 31, 838-840 (2006). [CrossRef] [PubMed]
  31. P. Hamm, R. A. Kaindl, and J. Stenger, "Noise suppression in femtosecond mid-infrared light sources," Opt. Lett. 25, 1798-1800 (2000). [CrossRef]
  32. N. Demirdoven, M. Khalil, O. Golonzka, and A. Tokmakoff, "Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses," Opt. Lett. 27, 433-435 (2002). [CrossRef]
  33. J. A. Gruetzmacher and N. F. Scherer, "Few-cycle mid-infrared pulse generation, characterization, and coherent propagation in optically dense media," Rev. Sci. Instrum. 73, 2227-2236 (2002). [CrossRef]
  34. S. M. Gallagher, A. W. Albrecht, T. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, "Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals," J. Opt. Soc. Am. B 15, 2338-2345 (1998). [CrossRef]
  35. L. Lepetit, G. Cheriaux, and M. Joffre, "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy," J. Opt. Soc. Am. B 12, 2467-2467 (1995). [CrossRef]
  36. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]
  37. P. K. Mukherjee, T. Amber, E. C. Fulmer, I. Kass, I. T. Arkin, and M. T. Zanni, "Site-specific vibrational dynamics of the CD3zet membrane peptide using heterodyned two-dimensional infrared photon echo spectroscopy," J. Chem. Phys. 120, 10215-10224 (2004). [CrossRef] [PubMed]
  38. Femtosoft Technologies, FROG software version 3.1.2, 2004.
  39. Fit coefficients of retrieved spectral phase at 3, 5, and 8 μm (−9.31×10−11 rad/nm 4+1.11×10−6 rad/nm 3−4.93×10−3 rad/nm 2+9.78 rad/nm −7.27×103; 3×10−9 rad/nm3−5×10−5 rad/nm2+0.237 rad/nm−397.33; −4.01×10−19 rad/nm 6+2.07×10−14 rad/nm 5−4.44×10−10 rad/nm 4+5.06×10−6 rad/nm 3−3.24×10− 2+1.10×102 rad/nm −1.56×105).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited