OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 10 — Oct. 1, 2006
  • pp: 2265–2272

Low-loss resonant modes in deterministically aperiodic nanopillar waveguides

Sergei V. Zhukovsky, Dmirty N. Chigrin, and Johann Kroha  »View Author Affiliations

JOSA B, Vol. 23, Issue 10, pp. 2265-2272 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quasiperiodic Fibonacci-like and fractal Cantor-like single- and multiple-row nanopillar waveguides are investigated theoretically by employing the finite-difference time-domain method. It is shown that resonant modes of the Fibonacci and Cantor waveguides can have a Q factor comparable with that of a point-defect resonator embedded in a periodic nanopillar waveguide, while the radiation is preferably emitted into the waveguide direction, thus improving coupling to an unstructured dielectric waveguide located along the structure axis. This is especially so when the dielectric waveguide introduces a small perturbation in the aperiodic structure, breaking the structure symmetry while staying well apart from the main localization area of the resonant mode. The high-Q factor and increased coupling with the external dielectric waveguide suggest using the proposed deterministically aperiodic nanopillar waveguides in photonic integrated circuits.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Photonic Crystals

Original Manuscript: January 25, 2006
Revised Manuscript: May 8, 2006
Manuscript Accepted: June 10, 2006

Sergei V. Zhukovsky, Dmirty N. Chigrin, and Johann Kroha, "Low-loss resonant modes in deterministically aperiodic nanopillar waveguides," J. Opt. Soc. Am. B 23, 2265-2272 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals (Princeton Springer, Berlin, 2001).
  3. D. Englund, I. Fushman, and J. Vuckovic, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005). [CrossRef] [PubMed]
  4. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Kassagne, A. Béraud, and C. Jouanin, "Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate," Appl. Phys. Lett. 76, 532-534 (2000). [CrossRef]
  5. C. Kim, W. J. Kim, A. Stapleton, J.-R. Cao, J. D. O'Brien, and P. D. Dapkus, "Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers," J. Opt. Soc. Am. B 19, 1777-1781 (2002). [CrossRef]
  6. S.-H. Kwon and Y.-H. Lee, "High index-contrast 2D photonic band-edge laser," IEICE Trans. Electron. E87-C, 308-315 (2004).
  7. H. Cao, "Review on latest developments in random lasers with coherent feedback," J. Phys. A 38, 10497-10535 (2005). [CrossRef]
  8. A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, "High-quality modes in low-dimensional array of nanoparticles: application to random lasers," J. Opt. Soc. Am. B 21, 121-131 (2004). [CrossRef]
  9. S. Fan, J. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, "Guided and defect modes in periodic dielectric waveguides," J. Opt. Soc. Am. B 12, 1267-1272 (1995). [CrossRef]
  10. D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor-Torres, "Nanopillars photonic crystal waveguides," Opt. Express 12, 617-622 (2004). [CrossRef] [PubMed]
  11. D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor-Torres, "Numerical characterization of nanopillar photonic crystal waveguides and directional couplers," Opt. Quantum Electron. 37, 331-341 (2005). [CrossRef]
  12. M. Tokushima, H. Yamada, and Y. Arakawa, "1.5−μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab," Appl. Phys. Lett. 84, 4298-4300 (2004). [CrossRef]
  13. S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, "Guiding 1.5μm light in photonic crystals based on dielectric rods," Appl. Phys. Lett. 85, 6110-6112 (2004). [CrossRef]
  14. E. Schonbrun, M. Tinker, W. Park, and J.-B. Lee, "Negative refraction in a Si-polymer photonic crystal membrane," IEEE Photon. Technol. Lett. 17, 1196-1198 (2005). [CrossRef]
  15. J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. Yang, "Single nanowire lasers," J. Phys. Chem. B 105, 11387-11390 (2001). [CrossRef]
  16. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001). [CrossRef]
  17. M. Kohmoto, B. Sutherland, and C. Tang, "Critical wave function and a Cantor-set spectrum of a one-dimensional quasicrystal model," Phys. Rev. B 35, 1020-1033 (1987). [CrossRef]
  18. A. V. Lavrinenko, S. V. Zhukovsky, K. S. Sandomirskii, and S. V. Gaponenko, "Propagation of classical waves in nonperiodic media: scaling properties of an optical Cantor filter," Phys. Rev. E 65, 036621 (2002). [CrossRef]
  19. C. Janot, Quasicrystals: A Primer (Clarendon, 1994).
  20. S. V. Zhukovsky, A. V. Lavrinenko, and S. V. Gaponenko, "Spectral scalability as a result of geometrical self-similarity in fractal multilayers," Europhys. Lett. 66, 455-461 (2004). [CrossRef]
  21. A. V. Lavrinenko, P. I. Borel, L. H. Fradsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 234-248 (2004). [CrossRef] [PubMed]
  22. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  23. V. V. Zosimov and L. M. Lyamshev, "Fractals in wave processes," Phys. Usp. 38, 347-384 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited