OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 11 — Nov. 1, 2006
  • pp: 2295–2302

Analytical solutions for the electromagnetic fields of flattened and annular Gaussian laser modes. III. Arbitrary length pulses and spot sizes

Scott M. Sepke and Donald P. Umstadter  »View Author Affiliations

JOSA B, Vol. 23, Issue 11, pp. 2295-2302 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the first two parts of this study, the electromagnetic field components were derived for infinitely long, flattened Gaussian laser beams [ J. Opt. Soc. Am. B 23, 2157 and J. Opt. Soc. Am. B 23, 2166 (2006) ]. These results are now extended without approximation to allow for finite laser pulses having an arbitrary duration beginning with the standard Gaussian beam profile and then generalizing these results to a flattened Gaussian. The resulting models thus allow for all pulse durations and spot sizes from infinite, paraxial beams to single-cycle, wavelength-size spots, with a savings of more than 2 orders of magnitude in computation time. Pulses having fewer than ten cycles exhibit significant modification from the monochromatic fields as a result of the finite bandwidth. Specifically, the energy in the focus is shown to decrease from the theoretical value of 86.5% to as low as 72.2% for a single-cycle pulse.

© 2006 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(140.7090) Lasers and laser optics : Ultrafast lasers
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 26, 2006
Manuscript Accepted: July 22, 2006

Scott M. Sepke and Donald P. Umstadter, "Analytical solutions for the electromagnetic fields of flattened and annular Gaussian laser modes. III. Arbitrary length pulses and spot sizes," J. Opt. Soc. Am. B 23, 2295-2302 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulses below 5 fs," Opt. Lett. 22, 522-524 (1997). [CrossRef] [PubMed]
  2. J. Seres, A. Müller, E. Seres, K. O'Keeffe, M. Lenner, R. Herzog, D. Kaplan, C. Spielmann, and F. Krausz, "Sub-10-fs, terawatt-scale Ti:sapphire laser system," Opt. Lett. 28, 1832-1834 (2003). [CrossRef] [PubMed]
  3. N. L. Wagner, E. A. Gibson, T. Popmintchev, and I. P. Christov, "Self-compression of ultrashort pulses through ionization-induced spatiotemproal reshaping," Phys. Rev. Lett. 93, 173902 (2004). [CrossRef] [PubMed]
  4. A. A. Balakin, G. M. Fraiman, N. J. Fisch, and S. Suckewer, "Backward Raman amplification in a partially ionized gas," Phys. Rev. E 72, 036401 (2005). [CrossRef]
  5. V. P. Kalosha and J. Herrmann, "Ultrawide spectral broadening and compression of single extremely short pulses in the visible, uv-vuv, and middle infrared by high-order stimulated Raman scattering," Phys. Rev. A 68, 023812 (2003). [CrossRef]
  6. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, "Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient," Opt. Lett. 30, 2657-2659 (2005). [CrossRef] [PubMed]
  7. A. J. Waddie, M. J. Thomson, and M. R. Taghizadeh, "Comparison of one- and two-dimensional dielectric reflector geometries for high-energy laser pulse compression," Opt. Lett. 30, 991-993 (2005). [CrossRef] [PubMed]
  8. M. Spanner, M. Y. Ivanov, V. Kalosha, J. Hermann, D. A. Wiersma, and M. Pshenichnikov, "Tunable optimal compression of ultrabroadband pulses by cross-phase modulation," Opt. Lett. 28, 749-751 (2003). [CrossRef] [PubMed]
  9. N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901 (2002). [CrossRef] [PubMed]
  10. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999). [CrossRef]
  11. B. Rau, T. Tajima, and H. Hojo, "Coherent electron acceleration by subcycle laser pulses," Phys. Rev. Lett. 78, 3310-3313 (1997). [CrossRef]
  12. J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, "Observation of laser-pulse shortening in nonlinear plasma waves," Phys. Rev. Lett. 95, 205003 (2005). [CrossRef] [PubMed]
  13. N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Houl, and G. A. Mourou, "Relativistic generation of isolated attosecond pulses in a lambda-cubed focal volume," Phys. Rev. Lett. 92, 063902 (2004). [CrossRef] [PubMed]
  14. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. DeSilvestri, "Absolute phase phenomona in photoionization with few-cycle laser pulses," Nature 414, 182-184 (2001). [CrossRef] [PubMed]
  15. S. Stagira, G. Sansone, C. Vozzi, and M. Nisoli, "Classical trajectories of molecules exposed to few-optical-cycle light pulses," Phys. Rev. A 73, 043403 (2006). [CrossRef]
  16. H. Niikura, D. M. Villeneuve, and P. B. Corkum, "Controlling vibrational wave packets with intense, few-cycle laser pulses," Phys. Rev. A 73, 021401(R) (2006). [CrossRef]
  17. P. J. Ho and J. H. Eberly, "Classical effects of laser pulse duration on strong-field double ionization," Phys. Rev. Lett. 95, 193002 (2005). [CrossRef] [PubMed]
  18. H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, "Direct imaging of transient molecular structures with ultrafast diffraction," Science 291, 458-462 (2001). [CrossRef] [PubMed]
  19. A. M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K. J. Gaffney, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A. G. MacPhee, D. Weinstein, D. P. Lowney, T. K. Allison, T. Matthews, R. W. Falcone, A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, P. H. Fuoss, C. C. Kao, D. P. Siddons, R. Pahl, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, T. Tschentscher, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H. N. Chapman, R. W. Lee, T. N. Hansen, S. Techert, J. S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, and J. B. Hastings, "Atomic-scale visualization of inertial dynamics," Science 308, 392-395 (2005). [CrossRef] [PubMed]
  20. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, "X-ray pulses approaching the attosecond frontier," Science 291, 1923-1927 (2001). [CrossRef] [PubMed]
  21. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, and P. Agostini, "Observation of a train of attosecond pulses from high harmonic generation," Science 292, 1689-1692 (2001). [CrossRef] [PubMed]
  22. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, "Attosecond metrology," Nature 414, 509-513 (2001). [CrossRef] [PubMed]
  23. P. Johnsson, R. Lopez-Martens, S. Kazamias, J. Mauritsson, C. Valentin, T. Remetter, K. Varju, M. B. Gaarde, Y. Mairesse, H. Wabnitz, P. Salieres, P. Balcou, K. J. Schafer, and A. L'Huillier, "Attosecond electron wave packet dynamics in strong laser fields," Phys. Rev. Lett. 95, 013001 (2005). [CrossRef] [PubMed]
  24. S. X. Hu and L. A. Collins, "Attosecond pump probe: exploring ultrafast electron motion inside an atom," Phys. Rev. Lett. 96, 073004 (2006). [CrossRef] [PubMed]
  25. M. Wickenhauser, X. M. Tong, and C. D. Lin, "Laser-induced substructures in above-threshold-ionization spectra from intense few-cycle laser pulses," Phys. Rev. A 73, 011401(R) (2006). [CrossRef]
  26. S. Sepke and D. Umstadter, "Analytical solutions for the electromagnetic fields of tightly focused laser beams of arbitrary pulse length," Opt. Lett. 31, 2589-2591 (2006). [CrossRef] [PubMed]
  27. S. Banerjee, S. Sepke, R. Shah, A. Valenzuela, A. Maksimchuk, and D. Umstadter, "Optical deflection and temporal characterization of ultra-fast laser produced electron beams," Phys. Rev. Lett. 95, 035004 (2005). [CrossRef] [PubMed]
  28. B. Quesnel and P. Mora, "Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum," Phys. Rev. E 58, 3719-3732 (1998). [CrossRef]
  29. A. Maltsev and T. Ditmire, "Above threshold ionization and in tightly focused, strongly relativistic laser fields," Phys. Rev. Lett. 90, 053002 (2003). [CrossRef] [PubMed]
  30. H. Hora, Laser Plasma Physics (SPIE Press, 2000).
  31. L. Cicchitelli, H. Hora, and R. Postle, "Longitudinal field components for laser beams in vacuum," Phys. Rev. A 41, 3727-3732 (1990). [CrossRef] [PubMed]
  32. H. Hora, M. Hoelss, W. Scheid, J. W. Wang, Y. K. Ho, F. Osman, and R. Castillo, "Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities," Laser Part. Beams 18, 135-144 (2002). [CrossRef]
  33. S. Weber, G. Riazuelo, P. Michel, R. Loubere, F. Walraet, V. T. Tikhonchuk, V. Malka, J. Ovadia, and G. Bonnaud, "Modeling of laser-plasma interaction on hydrodynamic scales: physics development and comparison with experiments," Laser Part. Beams 22, 189-195 (2004). [CrossRef]
  34. A. E. Siegman, Lasers (University Science, 1986).
  35. M. Lax, W. H. Louisell, and W. B. McKnight, "From Maxwell to paraxial wave optics," Phys. Rev. A 11, 1365-1370 (1975). [CrossRef]
  36. L. W. Davis, "Theory of electromagnetic beams," Phys. Rev. A 19, 1177-1179 (1979). [CrossRef]
  37. H. Hora, Physics of Laser Driven Plasmas (Wiley, 1981).
  38. J. P. Barton and D. R. Alexander, "Fifth order corrected electromagnetic field components for a fundamental Gaussian beam," J. Appl. Phys. 66, 2800-2802 (1989). [CrossRef]
  39. J. X. Wang, W. Sheid, M. Hoelss, and Y. K. Ho, "Fifth-order corrected field descriptions of the Hermite-Gaussian (0, 0) and (0, 1) mode laser beam," Phys. Rev. E 64, 066612 (2001). [CrossRef]
  40. P. X. Wang and J. X. Wang, "Classical field description for ultrashort tightly-focused laser pulses," Appl. Phys. Lett. 81, 4473-4475 (2002). [CrossRef]
  41. J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, "High-order corrected fields of ultrashort, tightly-focused laser pulses," Appl. Phys. Lett. 85, 3705-3707 (2004). [CrossRef]
  42. G. P. Agrawal and D. N. Pattanayak, "Gaussian beam propagation: beyond the paraxial approximation," J. Opt. Soc. Am. 69, 575-578 (1979). [CrossRef]
  43. P. Varga and P. Török, "The Gaussian wave solution of Maxwell's equations and the validity of scalar wave approximation," Opt. Commun. 152, 108-118 (1998). [CrossRef]
  44. S. Sepke and D. Umstadter, "Exact analytical solution for the vector electromagnetic field of Gaussian, flattened Gaussian, and annular Gaussian laser modes," Opt. Lett. 31, 1447-1449 (2006). [CrossRef] [PubMed]
  45. S. Sepke and D. Umstadter, "Analytical solutions for the electromagnetic fields of flattened and annular Gaussian laser modes. I. Small F-number laser focusing," J. Opt. Soc. Am. B 23, 2157-2165 (2006). [CrossRef]
  46. S. Sepke and D. Umstadter, "Analytical solutions for the electromagnetic fields of flattened and annular Gaussian laser modes. II. Large F-number laser focusing," J. Opt. Soc. Am. B 23, 2166-2173 (2006). [CrossRef]
  47. M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions, 12th ed. (Dover, 1972).
  48. R. Haberman, Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 3rd ed. (Prentice-Hall, 1997). [PubMed]
  49. A. Ludu and R. F. O'Connell, "Laplace transform of spherical Bessel functions," Phys. Scr. 65, 369-372 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited