OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 11 — Nov. 1, 2006
  • pp: 2303–2309

Second-order optical nonlinearity and accompanying near-surface structural modifications in thermally poled soda-lime silicate glasses

Honglin An and Simon Fleming  »View Author Affiliations

JOSA B, Vol. 23, Issue 11, pp. 2303-2309 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Soda-lime silicate (SLS) glasses were thermally poled at 230 ° C 280 ° C with dc voltages up to 2 kV applied to induce a second-order optical nonlinearity. Accompanying structural modifications to the thermally poled SLS glasses were investigated with scanning electron microscopy. On the cathode surface, sodium metasilicate crystals were formed through the reduction of migrating sodium ions at the cathode. At the anode, intense phase separation occurred within several micrometers beneath the anode surface during the thermal poling process. These structural modifications are attributed to the electric field enhancement effect. The second-order nonlinearity induced in such poled samples was found to still be present after a long period of high-temperature annealing, perhaps mainly due to a hindering effect from the phase separation and/or accumulated calcium ions to the recombination of space charges.

© 2006 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(190.4160) Nonlinear optics : Multiharmonic generation

ToC Category:

Original Manuscript: April 14, 2006
Revised Manuscript: August 1, 2006
Manuscript Accepted: August 6, 2006

Honglin An and Simon Fleming, "Second-order optical nonlinearity and accompanying near-surface structural modifications in thermally poled soda-lime silicate glasses," J. Opt. Soc. Am. B 23, 2303-2309 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991). [CrossRef] [PubMed]
  2. W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21, 1786-1788 (1996). [CrossRef] [PubMed]
  3. T. G. Alley and S. R. J. Brueck, "Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass," Opt. Lett. 23, 1170-1172 (1998). [CrossRef]
  4. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Iterative processing of second-order optical nonlinearity depth profiles," Opt. Express 12, 3367-3376 (2004). [CrossRef] [PubMed]
  5. D. Faccio, V. Pruneri, and P. G. Kazansky, "Noncollinear Maker's fringe measurements of second-order nonlinear optical layers," Opt. Lett. 25, 1376-1378 (2000). [CrossRef]
  6. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003). [CrossRef]
  7. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004). [CrossRef]
  8. H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004). [CrossRef]
  9. P. G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994). [CrossRef]
  10. T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998). [CrossRef]
  11. M. Qiu, F. Pi, G. Orriols, and M. Bibiche, "Signal damping of second-harmonic generation in poled soda-lime silicate glass," J. Opt. Soc. Am. B 15, 1362-1365 (1998). [CrossRef]
  12. F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998). [CrossRef]
  13. W. Margulis and F. Laurell, "Fabrication of waveguides in glasses by a poling procedure," Appl. Phys. Lett. 71, 2418-2420 (1997). [CrossRef]
  14. A. L. R. Brennand and J. S. Wilkinson, "Planar waveguides in multicomponent glasses fabricated by field-driven differential drift of cations," Opt. Lett. 27, 906-908 (2002). [CrossRef]
  15. V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000). [CrossRef]
  16. C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001). [CrossRef]
  17. H. An and S. Fleming, "Electric field enhanced nanocrystal formation in thermally poled optical fibres," Electron. Lett. 41, 584-586 (2005). [CrossRef]
  18. H. An and S. Fleming, "Near-anode phase separation in thermally poled soda lime glass," Appl. Phys. Lett. 88, 181106 (2006). [CrossRef]
  19. D. Kashchiev, "Nucleation in external electric field," J. Cryst. Growth 13-14, 128-130 (1972). [CrossRef]
  20. J. O. Isard, P. F. James, and A. H. Ramsden, "An investigation of the possibility that electric fields could affect the nucleation of glass ceramics," Phys. Chem. Glasses 19, 9-13m (1978).
  21. R. C. de Vekey and A. J. Majumdar, "Effect of electric field on phase separation of glass," Nature 225, 172-173 (1970). [CrossRef]
  22. W. Liu, K. M. Liang, Y. K. Zheng, S. R. Gu, and H. Chen, "The effect of an electric field on the phase separation of glasses," J. Phys. D 30, 3366-3370 (1997). [CrossRef]
  23. U. K. Krieger and W. A. Landford, "Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: experimental," J. Non-Cryst. Solids 102, 50-61 (1988). [CrossRef]
  24. P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, "Mechanism for thermal poling in twin-hole silicate fibers," J. Opt. Soc. Am. B 19, 870-874 (2002). [CrossRef]
  25. N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, "Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes," Opt. Express 12, 6093-6099 (2004). [CrossRef] [PubMed]
  26. C. S. Franco, G. A. Quintero, N. Myrén, A. Kudlinski, H. Zeghlache, H. R. Carvalho, A. L. C. Triques, D. M. González, P. M. P. Gouvêa, G. Martinelli, Y. Quiquempois, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Measurement of depletion region width in poled silica," Appl. Opt. 44, 5793-5796 (2005). [CrossRef] [PubMed]
  27. A. Kudlinski, G. Martinelli, and Y. Quiquempois, "Time evolution of second-order nonlinear profiles induced within thermally poled silica samples," Opt. Lett. 30, 1039-1041 (2005). [CrossRef] [PubMed]
  28. B. Roling and M. D. Ingram, "Mixed alkaline-earth effects in ion conducting glasses" J. Non-Cryst. Solids 265, 113-119 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited