OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 11 — Nov. 1, 2006
  • pp: 2328–2335

Thermodiffusion of magnetite nanoparticles in ferrofluid-doped micellar systems and in ferrofluids investigated by using the single-beam Z-scan technique

Sarah Alves, Fabio Luiz Sant’Anna Cuppo, Alain Bourdon, and Antonio Martins Figueiredo Neto  »View Author Affiliations


JOSA B, Vol. 23, Issue 11, pp. 2328-2335 (2006)
http://dx.doi.org/10.1364/JOSAB.23.002328


View Full Text Article

Enhanced HTML    Acrobat PDF (139 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Z-scan experimental technique is used to measure the concentration-dependent Soret coefficient of surfacted magnetic nanoparticles in water [pure ferrofluid (FF)] and in a micellar lyotropic mixture [lyotropic doped with ferrofluid (FL)]. In both cases, the magnetic-particle contribution to the Soret coefficient is shown to be proportional to its concentration. In the case of the ferrofluid-doped lyotropic system, it was possible to evaluate the Soret coefficient associated with the micelles under a temperature gradient. The thermal diffusion coefficients keep the relation D T FL 0.4 × D T FF . The Soret effective mobilities evaluated are μ s FF 6 × 10 11 s kg 1 and μ s FL 2 × 10 11 s kg 1 for the pure ferrofluid and micellar media, respectively. From a nanoscopic point of view, the smaller value of μ s FL when compared to μ s FF could be pictured as an additional resistance of the micellar medium to the particle’s flow imposed by the temperature gradient. This procedure gives a new way of determining the Soret coefficient of a weakly absorbing medium.

© 2006 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 3, 2006
Revised Manuscript: July 13, 2006
Manuscript Accepted: July 14, 2006

Citation
Sarah Alves, Fabio Luiz Sant'Anna Cuppo, Alain Bourdon, and Antonio Martins Figueiredo Neto, "Thermodiffusion of magnetite nanoparticles in ferrofluid-doped micellar systems and in ferrofluids investigated by using the single-beam Z-scan technique," J. Opt. Soc. Am. B 23, 2328-2335 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-11-2328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Ch. Soret, "Sur l'état d'équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homogène dont deux parties sont portées a des températures différentes," Arch. Sci. Phys. Nat. 2, 48-61 (1879).
  2. S. R. de Groot, L'Effet Soret, Diffusion Thermique dans les Phases Condensées (Noord-Hollandsche Uitgevers Maatschappij, 1945).
  3. L.Landau and E.Lifchitz, eds., Mécanique des Fluides (Mir, 1971).
  4. P. Costeseque, D. Fargue, and P. Jamet, in Thermal Nonequilibrium Phenomena in Fluid Mixtures, W.Köler and S.Wiegand, eds. (Springer, 2002).
  5. M. Schimpf, in Thermal Nonequilibrium Phenomena in Fluid Mixtures, W.Köler and S.Wiegand, eds. (Springer, 2002).
  6. S. Wiegand, "Thermal diffusion in liquids and polymer solutions," J. Phys.: Condens. Matter 16, R357-R379 (2004). [CrossRef]
  7. J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, "Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments," Phys. Rev. E 65, 031408 (2002). [CrossRef]
  8. S. Alves, A. Bourdon, and A. M. Figueiredo Neto, "Generalization of the thermal lens model formalism to account for thermodiffusion in a single-beam Z-scan experiment: determination of the Soret coefficient," J. Opt. Soc. Am. B 20, 713-718 (2003). [CrossRef]
  9. M. Marcoux and M. C. Charrier-Mojtabi, "Résolution analytique du problème de la diffusion thermogravitationnelle dans un mélange ternaire," Entropie 218, 13-17 (1999).
  10. K. B. Haugen and A. Firoozabadi, "On measurement of thermal diffusion coefficients in multicomponent mixtures," J. Chem. Phys. 122, 014516 (2005). [CrossRef]
  11. A. Leahy-Dios, M. M. Bou-Ali, J. K. Platten, and A. Firoozabadi, "Measurements of molecular and thermal diffusion coefficients in ternary mixtures," J. Chem. Phys. 122, 234502 (2005). [CrossRef] [PubMed]
  12. E. Blums, G. Kronkalns, and R. Ozols, "The characteristics of mass transfer processes in magnetic fluids," J. Magn. Magn. Mater. 39, 142-146 (1983). [CrossRef]
  13. O. Ecenarro, J. A. Madariaga, J. Navarro, C. M. Santamaria, J. A. Carrion, and J. M. Saviron, "Fickian and thermal diffusion coefficients from liquid thermogravitational columns," J. Phys.: Condens. Matter 2, 2289-2296 (1990). [CrossRef]
  14. W. Köhler, "Thermodiffusion in polymer solutions as observed by forced Rayleigh scattering," J. Chem. Phys. 98, 660-668 (1993). [CrossRef]
  15. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, "High-sensitivity single-beam n2 measurements," Opt. Lett. 14, 955-957 (1989). [CrossRef] [PubMed]
  16. A. M. Figueiredo Neto and S. R. A. Salinas, The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties (Oxford U. Press, 2005).
  17. R. E. Rosensweig, Ferrohydrodynamics (Cambridge U. Press, 1985).
  18. N. Arnaud and J. Georges, "Thermal lens spectrometry in aqueous solutions of Brij 35: investigation of micelle effects on the time-resolved and steady-state signals," Spectrochim. Acta Part A 57, 1085-1092 (2001). [CrossRef]
  19. R. Piazza and A. Guarino, "Soret effect in interacting micellar solutions," Phys. Rev. Lett. 88, 208302 (2002). [CrossRef] [PubMed]
  20. S. Alves, G. Demouchy, A. Bee, D. Talbot, A. Bourdon, and A. M. Figueiredo Neto, "Investigation of the sign of the Soret coefficient in different ionic and surfacted magnetic colloids using the forced Rayleigh scattering and single-beam Z-scan techniques," Philos. Mag. 83, 2059-2066 (2003). [CrossRef]
  21. F. Brochard and P. G. de Gennes, "Theory of magnetic suspensions in liquid crystals," J. Phys. (Paris) 31, 691-708 (1970). [CrossRef]
  22. J. Rault, P. E. Cladis, and J. P. Burger, "Ferronematics," Phys. Lett. 32A, 199-200 (1970). [CrossRef]
  23. L. Liébert and A. Martinet, "Coupling between nematic lyomesophases and ferrofluids," J. Phys. (Paris), Lett. 40, 363-368 (1979). [CrossRef]
  24. S. I. Alves, A. Bourdon, and A. M. Figueiredo Neto, "Investigation of the Soret coefficient in magnetic fluids using the Z-scan technique," J. Magn. Magn. Mater. 289C, 285-288 (2005). [CrossRef]
  25. A. F. C. Campos, F. A. Tourinho, G. J. da Silva, M. C. F. L. Lara, and J. Depeyrot, "Nanoparticles superficial density of charge in electric double-layered magnetic fluid: a conductimetric and potentiometric approach," Eur. Phys. J. E 6, 29-35 (2001). [CrossRef]
  26. S. Alves, F. L. S. Cuppo, and A. M. Figueiredo Neto, "Determination of the nonlinear refractive index of lyotropic mixtures with and without the ferrofluid doping: a time-resolved Z-scan experiment in millisecond time scales," J. Opt. Soc. Am. B 23, 67-74 (2006). [CrossRef]
  27. J. Lenglet, "Generation de second harmonique et diffusion Rayleigh force dans les colloïdes magnetiques," These de doctorat (l'Université Paris 7 Denis Diderot, 1996).
  28. A. C. Bento, A. J. Palngana, L. R. Evangelista, M. L. Baesso, J. R. D. Pereira, E. C. da Silva, and A. M. Mansanares, "Geometrical anisotropy dependence of thermal diffusivity in lyotropic nematics: mode mismatched thermal lens measurements," Appl. Phys. Lett. 68, 3371-3373 (1996). [CrossRef]
  29. Y. Galerne, A. M. Figueiredo Neto, and L. Liébert, "Microscopical structure of the uniaxial and biaxial lyotropic nematics," J. Chem. Phys. 87, 1851-1856 (1987). [CrossRef]
  30. P. R. G. Fernandes and A. M. Figueiredo Neto, "Flow-induced birefringence in a lyotropic liquid crystal in the isotropic phase: an order diffusion approach," Phys. Rev. E 56, 6185-6188 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited