OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 11 — Nov. 1, 2006
  • pp: 2348–2355

Linear and nonlinear propagation in negative index materials

Partha P. Banerjee and Georges Nehmetallah  »View Author Affiliations

JOSA B, Vol. 23, Issue 11, pp. 2348-2355 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze linear propagation in negative index materials by starting from a dispersion relation and by deriving the underlying partial differential equation. Transfer functions for propagation are derived in temporal and spatial frequency domains for unidirectional baseband and modulated pulse propagation, as well as for beam propagation. Gaussian beam propagation is analyzed and reconciled with the ray transfer matrix approach as applied to propagation in negative index materials. Nonlinear extensions of the linear partial differential equation are made by incorporating quadratic and cubic terms, and baseband and envelope solitary wave solutions are determined. The conditions for envelope solitary wave solutions are compared with those for the standard nonlinear Schrodinger equation in a positive index material.

© 2006 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(160.4670) Materials : Optical materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

Original Manuscript: May 24, 2006
Manuscript Accepted: July 10, 2006

Partha P. Banerjee and Georges Nehmetallah, "Linear and nonlinear propagation in negative index materials," J. Opt. Soc. Am. B 23, 2348-2355 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  2. J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37-43 (2004). [CrossRef]
  3. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005). [CrossRef]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  5. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Kontenbah, and M. H. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  6. M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, J. W. Haus, and A. M. Zheltikov, "Negative refraction of ultra-short pulses," Appl. Phys. B 81, 393-402 (2005). [CrossRef]
  7. M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, "Generalized nonlinear Schrodinger equation for dispersive susceptibility and permeability: application to negative index materials," Phys. Rev. Lett. 95, 013902 (2005). [CrossRef] [PubMed]
  8. A. Korpel and P. P. Banerjee, "A heuristic guide to nonlinear dispersive wave equations and soliton-type solutions," Proc. IEEE 72, 1109-1130 (1984). [CrossRef]
  9. K. E. Lonngren and S. V. Savov, Fundamentals of Electromagnetics with MATLAB (Scitech, 2005).
  10. T.-C. Poon and P. P. Banerjee, Contemporary Optical Image Processing with MATLAB (Elsevier, 2001).
  11. P. Tassin, G. Van der Sande, and I. Veretennicoff, "Left-handed materials: the key to subwavelength resolution?" in Proceedings of Symposium IEEE/LEOS Benelux (IEEE, 2004), pp. 41-44.
  12. A. Korpel, "Solitary wave formation through m-th order parametric interaction," Proc. IEEE 67, 1442-1443 (1979). [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  14. V. I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon, 1975).
  15. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited