OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 11 — Nov. 1, 2006
  • pp: 2383–2392

Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit

Stéphane Durant, Zhaowei Liu, Jennifer M. Steele, and Xiang Zhang  »View Author Affiliations

JOSA B, Vol. 23, Issue 11, pp. 2383-2392 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A conventional optical superlens for imaging beyond the diffraction limit produces images only in the near-field zone of the superlens. In contrast, an optical far-field superlens (FSL) device has a remarkable transmission property that leads to a one-to-one relationship between the far-field and the near-field angular spectra. This property makes the device suitable for imaging beyond the diffraction limit from far-field measurement. This specific FSL is composed of a properly designed periodically corrugated metallic slab-based superlens. Through the numerical design and parameter study, we show that the transmission property of this FSL is based on a specific strong-broadband wavenumber excitation of surface-plasmon polaritons supported by the nanostructured metallic grating.

© 2006 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(160.3900) Materials : Metals
(230.1950) Optical devices : Diffraction gratings
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Physical Optics

Original Manuscript: July 22, 2005
Revised Manuscript: November 7, 2005
Manuscript Accepted: November 21, 2005

Stéphane Durant, Zhaowei Liu, Jennifer M. Steele, and Xiang Zhang, "Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit," J. Opt. Soc. Am. B 23, 2383-2392 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  4. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005). [CrossRef] [PubMed]
  5. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005). [CrossRef] [PubMed]
  6. S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).
  7. S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).
  8. V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002). [CrossRef] [PubMed]
  9. I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005). [CrossRef] [PubMed]
  10. I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005). [CrossRef]
  11. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995). [CrossRef]
  12. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous couple-wave analysis for surface relief gratings-enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  13. P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  14. R. Carminati, M. Neito-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A 15, 706-712 (1998). [CrossRef]
  15. R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000). [CrossRef]
  16. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.
  17. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  18. V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  19. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  20. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003). [CrossRef]
  21. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002). [CrossRef]
  22. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003). [CrossRef] [PubMed]
  23. D. R. Smith, "How to build a superlens," Science 308, 502-503 (2005). [CrossRef] [PubMed]
  24. P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003). [CrossRef]
  25. Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003). [CrossRef]
  26. N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003). [CrossRef] [PubMed]
  27. A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver film via surface plasmon-polaritons", Opt. Express 12, 5881-5886 (2004). [CrossRef] [PubMed]
  28. I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004). [CrossRef]
  29. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  30. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  31. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited