OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 11 — Nov. 1, 2006
  • pp: 2434–2440

Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules

Nian-Shun Zhao, Hui Zhou, Qi Guo, Wei Hu, Xiang-Bo Yang, Sheng Lan, and Xu-Sheng Lin  »View Author Affiliations

JOSA B, Vol. 23, Issue 11, pp. 2434-2440 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the unidirectional transmission behavior of photonic crystal (PC) molecules consisting of defect pairs with Kerr nonlinearity and focus on how to enhance the transmission contrast and maximum transmission of the resulting optical diodes. Theoretical analyses in combination with the numerical simulations based on the finite-difference time-domain technique are employed to evaluate the designed optical diodes. It is found that by intentionally and properly misaligning the resonant frequencies of the constitutional PC atoms, the transmission contrast as well as the maximum transmission of the nonlinear PC molecules can be significantly improved. The figure of merit that characterizes the performance of optical diodes can be enhanced by a factor of 5 as compared with the optical diodes constructed by single asymmetrically confined PC atoms. In addition, the optimum performance of the optical diodes can be achieved only when the operating frequency is properly chosen.

© 2006 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Photonic Crystals

Original Manuscript: April 3, 2006
Revised Manuscript: June 21, 2006
Manuscript Accepted: July 17, 2006

Nian-Shun Zhao, Hui Zhou, Qi Guo, Wei Hu, Xiang-Bo Yang, Sheng Lan, and Xu-Sheng Lin, "Design of highly efficient optical diodes based on the dynamics of nonlinear photonic crystal molecules," J. Opt. Soc. Am. B 23, 2434-2440 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  2. M. Loncǎr, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939 (2000). [CrossRef]
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  4. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Elimination of cross talk in waveguide intersections," Opt. Lett. 23, 1855-1857 (1998). [CrossRef]
  5. M. Bayindir, B. Temelkuran, and E. Ozbay, "Photonic-crystal-based beam splitters," Appl. Phys. Lett. 77, 3902-3904 (2000). [CrossRef]
  6. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997). [CrossRef]
  7. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000). [CrossRef] [PubMed]
  8. S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, "Design of impurity band-based photonic crystal waveguides and delay lines for ultrashort optical pulses," J. Appl. Phys. 90, 4321-4327 (2001). [CrossRef]
  9. Y. Sugimoto, S. Lan, S. Nishikawa, N. Ikeda, H. Ishikawa, and K. Asakawa, "Design and fabrication of impurity band-based photonic crystal waveguides for optical delay lines," Appl. Phys. Lett. 81, 1946-1948 (2002). [CrossRef]
  10. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  11. P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, "Single-mode waveguide micro-cavity for fast optical switching," Opt. Lett. 21, 2017-2019 (1996). [CrossRef] [PubMed]
  12. P. Tran, "Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect," J. Opt. Soc. Am. B 14, 2589-2595 (1997). [CrossRef]
  13. S. Lan, S. Nishikawa, and O. Wada, "Leveraging deep photonic band gaps in photonic crystal impurity bands," Appl. Phys. Lett. 78, 2101-2103 (2001). [CrossRef]
  14. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003). [CrossRef]
  15. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994). [CrossRef]
  16. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide," Appl. Phys. Lett. 79, 314-316 (2001). [CrossRef]
  17. S. F. Mingaleev and Y. S. Kivshar, "Nonlinear transmission and light localization in photonic-crystal waveguides," J. Opt. Soc. Am. B 19, 2241-2249 (2002). [CrossRef]
  18. M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, "Bistable diode action in left-handed periodic structures," Phys. Rev. E 71, 037602(1-4) (2005). [CrossRef]
  19. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takzoe, "Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions," Nat. Mater. 4, 383-387 (2005). [CrossRef] [PubMed]
  20. X. S. Lin and S. Lan, "Unidirectional transmission in asymmetrically confined photonic crystal defects with Kerr nonlinearity," Chin. Phys. Lett. 22, 2847-2850 (2005). [CrossRef]
  21. X. S. Lin, W. Q. Wu, H. Zhou, K. F. Zhou, and S. Lan, "Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects," Opt. Express 14, 2429-2439 (2006). [CrossRef] [PubMed]
  22. S. Lan and H. Ishikawa, "Coupling of defect pairs and generation of dynamical band gaps in the impurity bands of nonlinear photonic crystals for all-optical switching," J. Appl. Phys. 91, 2573-2577 (2002). [CrossRef]
  23. K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). In this paper, a commercial software developed by Rsoft Design Group (http://www.rsoftdesign.com) is used for nonlinear FDTD simulation. [CrossRef]
  24. M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002). [CrossRef]
  25. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R)(1-4) (2002). [CrossRef]
  26. S. Lan, X. W. Chen, J. D. Chen, and X. S. Lin, "Physical origin of the ultrafast response of nonlinear photonic crystal atoms to the excitation of ultrashort pulses," Phys. Rev. B 71, 125122(1-6) (2005). [CrossRef]
  27. X. S. Lin, X. W. Chen, and S. Lan, "Investigation and modification of coupling of photonic crystal defects," Chin. Phys. Lett. 22, 1698-1701 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited