OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 12 — Dec. 1, 2006
  • pp: 2503–2510

Theoretical investigation of gain-clamped semiconductor optical amplifiers using the amplified spontaneous emission compensating effect

Xin-Hong Jia  »View Author Affiliations


JOSA B, Vol. 23, Issue 12, pp. 2503-2510 (2006)
http://dx.doi.org/10.1364/JOSAB.23.002503


View Full Text Article

Enhanced HTML    Acrobat PDF (649 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The theoretical model on gain-clamped semiconductor optical amplifiers (GC-SOAs) based on compensating light has been constructed. Using this model, the effects of insertion position and peak reflectivity of the fiber Bragg grating (FBG) on the gain clamping and noise figure (NF) characteristics of GC-SOA are analyzed. The results show that the effect of the FBG insertion position on gain clamping is slight, but the lower NF can be obtained for input FBG-type GC-SOA; when the FBG peak wavelength is designed to close the signal wavelength, the gain clamping and NF characteristics that can be reached are better. Further study shows that, with the increased peak reflectivity of the FBG, the critical input power is broadened and the gain tends to be varied slowly; the larger bias current is helpful to raise gain and decrease the noise figure but is harmful to a gain flatness characteristic.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 19, 2006
Revised Manuscript: September 3, 2006
Manuscript Accepted: September 3, 2006

Citation
Xin-Hong Jia, "Theoretical investigation of gain-clamped semiconductor optical amplifiers using the amplified spontaneous emission compensating effect," J. Opt. Soc. Am. B 23, 2503-2510 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-12-2503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. C. Blank and J. D. Cox, 'Optical time domain reflectomeory on optical amplifiers systems,' J. Lightwave Technol. 7, 1549-1555 (1989). [CrossRef]
  2. S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, and H. Wakabayashi, 'Long-haul coherent optical fiber communication systems using optical amplifiers,' J. Lightwave Technol. 9, 251-260 (1991). [CrossRef]
  3. G. Toptchiyski, S. Kindt, K. Petermann, E. Hilliger, S. Diez, and H. Weber, 'Time-domain modeling of semiconductor optical amplifiers for OTDM applications,' J. Lightwave Technol. 17, 2577-2583 (1999). [CrossRef]
  4. D. Cassioli, S. Scotti, and A. Mecozzi, 'A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,' IEEE J. Quantum Electron. 36, 1072-1080 (2000). [CrossRef]
  5. A. Reale, A. D. Carlo, and P. Lugli, 'Gain dynamics in traveling-wave semiconductor optical amplifiers,' IEEE J. Quantum Electron. 7, 293-299 (2001). [CrossRef]
  6. C. P. Larsen and M. Gustavsson, 'Linear crosstalk in 4×4 semiconductor optical amplifier gate switch matrix,' J. Lightwave Technol. 15, 1865-1870 (1997). [CrossRef]
  7. Y. Maeno, Y. Suemura, A. Tajima, and N. Henmi, 'A 2.56Tb/s multiwavelength and scalable switch-fabric for fast packet-switching networks,' IEEE Photon. Technol. Lett. 10, 1180-1182 (1998). [CrossRef]
  8. A. Uskov, J. Mork, and J. Mark, 'Theory of short-pulse gain saturation in semiconductor laser amplifiers,' IEEE Photon. Technol. Lett. 4, 443-446 (1992). [CrossRef]
  9. J. Sun, G. Morthier, and R. Baets, 'Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,' IEEE J. Sel. Top. Quantum Electron. 3, 1162-1167 (1997). [CrossRef]
  10. G. Morthier and J. Sun, 'Repetition-rate dependence of the saturation power of gain-clamped semiconductor optical amplifiers,' IEEE Photon. Technol. Lett. 10, 282-284 (1998). [CrossRef]
  11. G. Giuliani and D. D'Alessandro, 'Noise analysis of conventional and gain-clamped semiconductor optical amplifiers,' J. Lightwave Technol. 18, 1256-1263 (2000). [CrossRef]
  12. J. Park, X. Li, and W. P. Huang, 'Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,' IEEE J. Quantum Electron. 39, 1415-1423 (2003). [CrossRef]
  13. B. Bauer, F. Henry, and R. Schimpe, 'Gain stabilization of a semiconductor optical amplifier by distributed feedback,' IEEE Photon. Technol. Lett. 6, 182-185 (1994). [CrossRef]
  14. J. Park, X. Li, and W. P. Huang, 'Gain clamping in semiconductor optical amplifiers with second-order index-coupled DFB gratings,' IEEE J. Quantum Electron. 41, 366-375 (2005). [CrossRef]
  15. H. H. Lee, D. Lee, and H. S. Chung, 'A gain-clamped-semiconductor-optical-amplifier combined with a distributed Raman-fiber-amplifer: a good candidate as an inline amplifier for WDM networks,' Opt. Commun. 229, 249-252 (2004). [CrossRef]
  16. M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002). [CrossRef]
  17. S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, 'Gain clamping in two-stage L-band EDFA using a broadband FBG,' IEEE Photon. Technol. Lett. 16, 422-424 (2004). [CrossRef]
  18. J. T. Ahn, J. M. Lee, and K. H. Kim, 'Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission,' Electron. Lett. 39, 1140-1141 (2003). [CrossRef]
  19. M. J. Connelly, 'Wideband semiconductor optical amplifier steady-state numerical model,' IEEE J. Quantum Electron. 37, 439-447 (2001). [CrossRef]
  20. C. Y. Jin, Y. Z. Huang, L. J. Yu, and S. L. Deng, 'Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field,' IEEE J. Quantum Electron. 40, 513-518 (2004). [CrossRef]
  21. P. M. Gong, J. T. Hsieh, S. L. Lee, and J. Wu, 'Theoretical analysis of wavelength conversion based on four-wave mixing in light-holding SOAs,' IEEE J. Quantum Electron. 40, 31-40 (2004). [CrossRef]
  22. P.-L. Li, D.-X. Huang, X.-L. Zhang, J. Chun, and L.-R. Huang, 'Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser,' IEEE J. Quantum Electron. 41, 581-588 (2005). [CrossRef]
  23. L. Thylen, 'Amplified spontaneous emission and gain characteristics of Fabry-Perot and traveling wave type semiconductor laser amplifiers,' IEEE J. Quantum Electron. 24, 1532-1537 (1988). [CrossRef]
  24. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited