OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 12 — Dec. 1, 2006
  • pp: 2528–2534

Efficient generation of terahertz pulses from single infrared beams in C Ga As C waveguiding heterostructures

Vladimir A. Kukushkin  »View Author Affiliations


JOSA B, Vol. 23, Issue 12, pp. 2528-2534 (2006)
http://dx.doi.org/10.1364/JOSAB.23.002528


View Full Text Article

Enhanced HTML    Acrobat PDF (112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The difference-frequency terahertz (THz) pulse generation from Fourier components of a single infrared laser pulse in waveguiding heterostructures is considered. It is shown that a proper choice of the waveguide parameters allows for the significant reduction of the input pulse group-velocity dispersion (GVD). As a result, it is possible to noticeably increase the length of such devices and, consequently, the pump-THz pulse conversion efficiency by employing low absorbing materials with high intrinsic GVD coefficients for their fabrication. A particular example of such a scheme—a C Ga As C waveguiding heterostructure—is analyzed, a corresponding conversion rate is found, and ways for its further improvement are considered.

© 2006 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 24, 2006
Revised Manuscript: September 1, 2006
Manuscript Accepted: September 8, 2006

Citation
Vladimir A. Kukushkin, "Efficient generation of terahertz pulses from single infrared beams in C/GaAs/C waveguiding heterostructures," J. Opt. Soc. Am. B 23, 2528-2534 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-12-2528


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, 'Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,' in Review of Progress in Quantitative Nondestructive Evaluation, D.O.Thompson and D.E.Chimenti, eds., AIP Conf. Proc. 760, 570-577 (2005).
  2. E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, 'In vivo study of human skin using pulsed terahertz radiation,' Phys. Med. Biol. 49, 1595-1607 (2004). [CrossRef] [PubMed]
  3. T. Taniuchi, S. Okada, and H. Nakanishi, 'Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,' J. Appl. Phys. 95, 5984-5988 (2004). [CrossRef]
  4. A. Agrawal, H. Cao, and A. Nahata, 'Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission,' New J. Phys. 7, doi: 10.1088/1367-2630/7/1/249 (2005). [CrossRef]
  5. B. H. Wu and J. C. Cao, 'Nonlinear dynamics in multisubband semiconductor quantum wells under terahertz radiation,' Physica B 349, 322-326 (2004). [CrossRef]
  6. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, 'Terahertz semiconductor-heterostructure laser,' Nature 417, 156-159 (2002). [CrossRef] [PubMed]
  7. B. S. Williams, S. Kumar, H. Callebaut, and Q. Hu, 'Terahertz quantum-cascade laser at 100 μm using metal waveguide for mode confinement,' Appl. Phys. Lett. 83, 2124-2126 (2003). [CrossRef]
  8. S. Dhillon, J. Alton, S. Barbieri, C. Sirtori, A. de Rossi, M. Calligaro, H. E. Beere, and D. Ritchie, 'Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides,' Appl. Phys. Lett. 87, 071101 (2005). [CrossRef]
  9. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, 'High-intensity terahertz radiation from a microstructured large-area photoconductor,' Appl. Phys. Lett. 86, 121114 (2005). [CrossRef]
  10. L. Duvillaret, F.-F. Garet, J.-F. Roux, and J.-L. Coutaz, 'Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,' IEEE J. Sel. Top. Quantum Electron. 7, 615-623 (2001). [CrossRef]
  11. A. G. Davies, E. H. Linfield, and M. B. Johnston, 'The development of terahertz sources and their applications,' Phys. Med. Biol. 47, 3679-3689 (2002). [CrossRef] [PubMed]
  12. H. Roskos, M. Nuss, J. Shah, K. Leo, D. Miller, A. Fox, S. Schmitt-Rink, and K. Kohler, 'Coherent submillimeter-wave emission from charge oscillations in a double-well potential,' Phys. Rev. Lett. 68, 2216-2219 (1992). [CrossRef] [PubMed]
  13. P. Planken, M. Nuss, I. Brener, K. Goossen, M. Luo, S. Chuang, and L. Pfeiffer, 'Terahertz emission in single quantum wells after coherent optical excitation of light hole and heavy hole excitons,' Phys. Rev. Lett. 69, 3800-3803 (1992). [CrossRef] [PubMed]
  14. M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, 'Terahertz radiation from superconducting YBa2Cu3O7-thin films excited by femtosecond optical pulses,' Appl. Phys. Lett. 69, 2122-2124 (1996). [CrossRef]
  15. C. Toth, J. van Tilborg, C. G. Geddes, G. Fubiani, C. B. Schroeder, E. Esarey, J. Faure, G. Dugan, and W. P. Leemans, 'Powerful pulsed THz radiation from laser-accelerated relativistic electron bunches,' in Signal Processing, Sensor Fusion, and Target Recognition XIII, I.Kadar, ed., Proc. SPIE 5448, 491-504 (2004).
  16. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, 'Cherenkov radiation from femtosecond optical pulses in electro-optic media,' Phys. Rev. Lett. 53, 1555-1558 (1984). [CrossRef]
  17. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  18. T. J. Carrig, G. Rodriguez, T. S. Clement, A. J. Taylor, and K. R. Stewart, 'Scaling of terahertz radiation via optical rectification in electro-optic crystals,' Appl. Phys. Lett. 66, 121-123 (1995). [CrossRef]
  19. A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almasi, and J. Hebling, 'Scaling up the energy of THz pulses created by optical rectification,' Opt. Express 13, 5762-5768 (2005). [CrossRef] [PubMed]
  20. T. Yajima and N. Takeuchi, 'Far-infrared difference-frequency generation by picosecond laser pulses,' Jpn. J. Appl. Phys. 9, 1361-1371 (1970). [CrossRef]
  21. B. Hu, X.-C. Zhang, D. Auston, and P. Smith, 'Free-space radiation from electro-optic crystals,' Appl. Phys. Lett. 56, 506-508 (1990). [CrossRef]
  22. L. Xu, X.-C. Zhang, and D. Auston, 'Terahertz beam generation by femtosecond optical pulses in electro-optic materials,' Appl. Phys. Lett. 61, 1784-1786 (1992). [CrossRef]
  23. A. Bonvalet, M. Joffre, J. Martin, and A. Migus, 'Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,' Appl. Phys. Lett. 67, 2907-2909 (1995). [CrossRef]
  24. S. Chuang, S. Schmitt-Rink, B. Green, P. Saeta, and A. Levi, 'Optical rectification at semiconductor surfaces,' Phys. Rev. Lett. 68, 102-105 (1992). [CrossRef] [PubMed]
  25. B. Greene, P. Saeta, D. Dykaar, S. Schmitt-Rink, and S. Chuang, 'Far-infrared light generation at semiconductor surfaces and its spectroscopic applications,' IEEE J. Quantum Electron. 28, 2302-2312 (1992). [CrossRef]
  26. X.-C. Zhang and D. Auston, 'Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,' J. Appl. Phys. 71, 326-338 (1992). [CrossRef]
  27. A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, 'Terahertz optical rectification from ‹110› zinc-blende crystals,' Appl. Phys. Lett. 64, 1324-1326 (1994). [CrossRef]
  28. R. A. Akhmedzhanov, A. I. Korytin, A. G. Litvak, A. M. Sergeev, and E. V. Suvorov, 'Generation and detection of ultrashort electromagnetic pulses in terahertz region and their application for spectroscopy,' Radiophys. Quantum Electron. 48, 837-843 (2005). [CrossRef]
  29. T. Carrig, I. Rodriguez, T. Clement, A. Taylor, and K. Stewart, 'Generation of terahertz radiation using electro-optic crystal mosaics,' Appl. Phys. Lett. 66, 10-12 (1995). [CrossRef]
  30. A. Nahata, D. Auston, C. Wu, and J. Yardley, 'Generation of terahertz radiation from a poled polymer,' Appl. Phys. Lett. 67, 1358-1360 (1995). [CrossRef]
  31. K. H. Yang, P. L. Richards, and Y. R. Shen, 'Generation of far-infrared radiation by picosecond light pulses in LiNbO3,' Appl. Phys. Lett. 19, 320-323 (1971). [CrossRef]
  32. J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, 'Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals,' Phys. Rev. Lett. 89, 047401 (2002). [CrossRef] [PubMed]
  33. A. Nahata, A. S. Weling, and T. F. Heinz, 'A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,' Appl. Phys. Lett. 69, 2321-2323 (1996). [CrossRef]
  34. R. Kaindl, D. Smith, M. Joschko, M. Hasselbeck, M. Woerner, and T. Elsaesser, 'Femtosecond infrared pulses tunable from 9to18 μm at an 88-MHz repetition rate,' Opt. Lett. 23, 861-863 (1998). [CrossRef]
  35. R. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, 'Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,' Appl. Phys. Lett. 75, 1060-1062 (1999). [CrossRef]
  36. Y. J. Ding, 'Quasi-single-cycle terahertz pulses based on broad-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies,' IEEE J. Sel. Top. Quantum Electron. 10, 1171-1179 (2004). [CrossRef]
  37. F. P. Kapron and D. B. Keck, 'Pulse transmission through a dielectric optical waveguide,' Appl. Opt. 10, 1519-1523 (1971). [CrossRef] [PubMed]
  38. A. N. Pikhtin and A. D. Yas'kov, 'Refraction index dispersion in semiconductors with diamond and zinc blende structures,' Sov. Phys. Semicond. 12, 622-626 (1978).
  39. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  40. G. Gallot, J. Zhang, R. W. McGowan, T. Jeon, and D. Grischkowsky, 'Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,' Appl. Phys. Lett. 74, 3450-3452 (1999). [CrossRef]
  41. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  42. M.J.Weber, ed., Handbook of Optical Materials (CRC, 2003).
  43. J. U. Kang, A. Villeneuve, M. Sheik-Bahae, and G. I. Stegeman, 'Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,' Appl. Phys. Lett. 65, 147-149 (1994). [CrossRef]
  44. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, 1976).
  45. R. H. Hall, 'Recombination processes in semiconductors,' Proc. IEE Suppl. 106 B, 923-931 (1959).
  46. D.R.Lide ed., CRC Handbook of Chemistry and Physics (CRC, 2005).
  47. C. Flytzanis, 'Infrared dispersion of second-order electric susceptibilities in semiconducting compounds,' Phys. Rev. B 6, 1264-1290 (1972). [CrossRef]
  48. Y. J. Ding, 'Efficient generation of high-power quasi-single-cycle terahertz pulses from a single infrared beam in a second-order nonlinear medium,' Opt. Lett. 29, 2650-2652 (2004). [CrossRef] [PubMed]
  49. W. Shi and Y. J. Ding, 'Designs of terahertz waveguides for efficient parametric terahertz generation,' Appl. Phys. Lett. 82, 4435-4437 (2003). [CrossRef]
  50. M.K.Barnoski, ed., Introduction to Integrated Optics (Plenum, 1974).
  51. M. J. Weber, Handbook of Laser Wavelengths (CRC, 1999).
  52. L. A. Vainshtein, Electromagnetic Waves (Sov. Radio, 1988) (in Russian).
  53. O. Svelto, Principles of Lasers (Plenum, 1989).
  54. A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited