OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 2 — Feb. 1, 2006
  • pp: 195–202

Accurate efficiency evaluation of energy-transfer processes in phosphosilicate Er 3 + Yb 3 + -codoped fibers

Mathieu Laroche, Sylvain Girard, Jayanta K. Sahu, W. Andrew Clarkson, and Johan Nilsson  »View Author Affiliations

JOSA B, Vol. 23, Issue 2, pp. 195-202 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new approach for the prediction of energy-transfer efficiencies in codoped Er–Yb double-clad fiber (EYDCF) is presented. Ab initio calculations have been performed on the basis of migration-assisted energy-transfer models. The two main Yb 3 + -to- Er 3 + energy transfers as well as the Er 3 + cooperative upconversion were theoretically estimated, and the results indicate that the secondary energy-transfer parameter is more efficient than the upconversion process. Theoretical calculations were found to be consistent with experimental energy-transfer parameters recorded in various fiber samples. We show that the first Yb 3 + -to- Er 3 + energy-transfer parameter that is needed in all modelings based on rate equations can be calculated by use of a simple relation. Our approach also permits the prediction of the laser efficiency of EYDCFs, and a comparison of measured and calculated maximum laser slope efficiency shows a good agreement.

© 2006 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 14, 2005
Revised Manuscript: July 15, 2005
Manuscript Accepted: September 7, 2005

Mathieu Laroche, Sylvain Girard, Jayanta K. Sahu, W. Andrew Clarkson, and Johan Nilsson, "Accurate efficiency evaluation of energy-transfer processes in phosphosilicate Er3+-Yb3+-codoped fibers," J. Opt. Soc. Am. B 23, 195-202 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, "Diode-pumped bulk erbium-ytterbium lasers," Appl. Phys. B 63, 425-436 (1996).
  2. E. Georgiou, O. Musset, J. P. Boquillon, B. Denker, and S. E. Sverchkov, "50 mJ/30 ns FTIR Q-switched diode-pumped Er:Yb:glass 1.54 µm laser," Opt. Commun. 198, 147-153 (2001). [CrossRef]
  3. A. Levoshkin and J. E. Montagne, "Efficient diode pumping for Q-switched Yb:Er:glass lasers," Appl. Opt. 40, 3023-3032 (2001). [CrossRef]
  4. G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, and P. Laporta, "Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses," J. Non-Cryst. Solids 322, 256-261 (2003). [CrossRef]
  5. B. T. Hansson and A. T. Friberg, "Eye-safe actively Q-switched microchip laser with an electro-absorbing semiconductor modulator," Opt. Lett. 26, 1057-1059 (2001). [CrossRef]
  6. Ph. Thony, B. Ferrand, and E. Molva, "1.55 µm passively Q-switched microchip laser," in Advanced Solid State Lasers, W.R. Bosenberg and M.M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 327-329.
  7. R. Häring, R. Paschotta, R. Fluck, E. Gini, H. Melchior, and U. Keller, "Passively Q-switched microchip laser at 1.5 µm," J. Opt. Soc. Am. B 18, 1805-1812 (2001). [CrossRef]
  8. S. Jiang, M. Myers, and N. Peyghambarian, "Er3+ doped phosphate glasses and lasers," J. Non-Cryst. Solids 239, 143-148 (1998). [CrossRef]
  9. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, "Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers," J. Lightwave Technol. 16, 1990-2001 (1998). [CrossRef]
  10. J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003). [CrossRef]
  11. M. Laroche, P. Jander, W. A. Clarkson, J. K. Sahu, J. Nilsson, and Y. Jeong, "High power cladding-pumped tunable Er, Yb-doped fibre laser," Electron. Lett. 40, 855-856 (2004). [CrossRef]
  12. E. Tanguy, C. Larat, and J. P. Pocholle, "Modelling of the erbium-ytterbium laser," Opt. Commun. 153, 172-183 (1998). [CrossRef]
  13. G. C. Valley, "Modeling cladding-pumped Er/Yb fiber amplifiers," Opt. Laser Technol. 7, 21-44 (2001).
  14. T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004). [CrossRef]
  15. S. U. Alam, P. W. Turner, A. B. Grudinin, and J. Nilsson, "High energy, high repetition rate, tunable Er-Yb-codoped Q-switched fibre laser," in Conference on Lasers and Electro-Optics Vol. 56 of OSA Trans in Optics and Photonics Series (Optical Society of America, 2001), pp. 218-219.
  16. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W.A. Clarkson, S. Girard, and R. Moncorgé, "Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser," Opt. Lett. 27, 1980-1982 (2002). [CrossRef]
  17. P. Petropoulos, S. Dhanjal, D. J. Richardson, and N. I. Zheludev, "Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror," Opt. Commun. 166, 239-245 (1999). [CrossRef]
  18. M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967). [CrossRef]
  19. S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, "The mechanism of Tm-->Ho energy transfer in LiYF4," J. Phys. Condens. Matter 44, 8525-8542 (1992). [CrossRef]
  20. M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, "Energy transfer between lanthanide and actinide ions in LiYF4," Opt. Mater. 6, 121-127 (1996). [CrossRef]
  21. J. A. Caird, A. J. Ramponi, and P. R. Staver, "Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses," J. Opt. Soc. Am. B 8, 1391-1403 (1991). [CrossRef]
  22. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley Interscience, 1994).
  23. P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, "Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass," Phys. Rev. B 60, 11380-11390 (1999). [CrossRef]
  24. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, "Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers," Opt. Lett. 20, 2487-2489 (1995). [CrossRef] [PubMed]
  25. B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er3+- and Yb3+/Er3+-doped phosphate glasses," J. Opt. Soc. Am. B 17, 833-839 (2000). [CrossRef]
  26. G. A. Sefler, W. D. Mack, G. C. Valley, and T. S. Rose, "Secondary energy transfer and nonparticipatory Yb3+ ions in Er3+-Yb3+ high-power amplifier fibers," J. Opt. Soc. Am. B 21, 1740-1748 (2004). [CrossRef]
  27. S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, "Measurement of the energy transfer and upconversion constants in Er-Yb-doped phosphate glass," Opt. Quantum Electron. 31, 1345-1346 (1999). [CrossRef]
  28. J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Energy transfer and upconversion in erbium-ytterbium-doped fluoride phosphate glasses," Appl. Phys. B 74, 233-236 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited