OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 2 — Feb. 1, 2006
  • pp: 276–281

Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths

Flurin Juvalta, Mojca Jazbinšek, Peter Günter, and Kenji Kitamura  »View Author Affiliations


JOSA B, Vol. 23, Issue 2, pp. 276-281 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000276


View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measured the unclamped electro-optic coefficients r 13 and r 33 of near-stoichiometric and congruent lithium tantalate ( Li Ta O 3 ) from λ = 633 nm down to the absorption edge at 275 nm . Electro-optical coefficients up to r 33 = 52 ± 1 pm V have been determined at λ = 275 nm . The reduced half-wave voltage at 275 nm is v π = 300 ± 10 V for r 33 and v π = 560 ± 20 V for the configuration employing r c = r 33 ( n o n e ) 3 r 13 . We propose a two-oscillator polarization potential model that well describes our data in the UV. In the investigated wavelength range the values for stoichiometric and congruent Li Ta O 3 differ by less than 3%, which is below the accuracy of our measurements. In addition, the refractive indices in the UV were measured, and more precise Sellmeier parameters for the UV and visible were determined based on the previous and new refractive-index data.

© 2006 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.2100) Materials : Electro-optical materials
(160.2260) Materials : Ferroelectrics
(260.7190) Physical optics : Ultraviolet

ToC Category:
Materials

History
Original Manuscript: June 15, 2005
Manuscript Accepted: September 10, 2005

Citation
Flurin Juvalta, Mojca Jazbinsek, Peter Günter, and Kenji Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B 23, 276-281 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-2-276


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Furukawa, K. Kitamura, K. Niwa, H. Hatano, P. Bernasconi, G. Montemezzani, and P. Günter, "Stoichiometric LiTaO3 for dynamic holography in near UV wavelength range," Jpn. J. Appl. Phys. Part 1 38, 1816-1819 (1999). [CrossRef]
  2. K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, "Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control," J. Appl. Phys. 82, 1006-1009 (1997). [CrossRef]
  3. P. Dittrich, B. Koziarska-Glinka, G. Montemezzani, P. Günter, S. Takekawa, K. Kitamura, and Y. Furukawa, "Deep-ultraviolet interband photorefraction in lithium tantalate," J. Opt. Soc. Am. B 21, 632-639 (2004). [CrossRef]
  4. M. Jazbinsek, M. Zgonik, S. Takekawa, M. Nakamura, K. Kitamura, and H. Hatano, "Reduced space-charge fields in near-stoichiometric LiTaO3 for blue, violet and near-ultraviolet light beams," Appl. Phys. B 75, 891-894 (2002). [CrossRef]
  5. A. Ashkin, G. Boyd, J. Dziedzic, R. Smith, A. Ballman, J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966). [CrossRef]
  6. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, "Crystal growth and low coercive field 180 degrees domain switching characteristics of stoichiometric LiTaO3," Appl. Phys. Lett. 71, 3073-3075 (1998). [CrossRef]
  7. Y. W. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, "Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 95, 7637-7644 (2004). [CrossRef]
  8. K. Bastwöste, S. Schwalenberg, C. Bäumer, and E. Kratzig, "Temperature and composition dependence of birefringence of lithium-tantalate crystals determined by holographic scattering," Phys. Status Solidi A 199, R1-R3 (2003). [CrossRef]
  9. P. Dittrich, G. Montemezzani, and P. Günter, "Tunable optical filter for wavelength division multiplexing using dynamic interband photorefractive gratings," Opt. Commun. 214, 363-370 (2002). [CrossRef]
  10. H. Coufal, D. Pasaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).
  11. P. Bernasconi, G. Montemezzani, M. Wintermantel, I. Biaggio, and P. Günter, "High-resolution, high-speed photorefractive incoherent-to-coherent optical converter," Opt. Lett. 24, 199-201 (1999). [CrossRef]
  12. P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999). [CrossRef]
  13. J. Meyn and M. Fejer, "Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate," Opt. Lett. 22, 1214-1216 (1997). [CrossRef] [PubMed]
  14. P. Lenzo, E. Turner, E. Spencer, and A. Ballman, "Electrooptic coefficients and elastic-wave propagation in single-domain ferroelectric lithium tantalate," Appl. Phys. Lett. 8, 81-82 (1966). [CrossRef]
  15. J. Casson, K. Gahagan, D. Scrymgeour, R. Jain, J. Robinson, V. Gopalan, and R. Sander, "Electro-optic coefficients of lithium tantalate at near-infrared wavelengths," J. Opt. Soc. Am. B 21, 1948-1952 (2004). [CrossRef]
  16. K. S. Abedin and H. Ito, "Temperature-dependent dispersion relation of ferroelectric lithium tantalate," J. Appl. Phys. 80, 6561-6563 (1996). [CrossRef]
  17. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, "Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals," Jpn. J. Appl. Phys., Part 1 41, L465-L467 (2002). [CrossRef]
  18. S. H. Wemple and M. DiDomenico, Jr., "Electrooptical and nonlinear optical properties of crystals," in Applied Solid State Science, R.Wolfe, ed. (Academic, 1972), Vol. 3, pp. 263-383.
  19. T. Fukuda, S. Matsumura, H. Hirano, and T. Ito, "Growth of LiTaO3 single-crystal for saw device applications," J. Cryst. Growth 46, 179-184 (1979). [CrossRef]
  20. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system," J. Cryst. Growth 197, 889-895 (1999). [CrossRef]
  21. C. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Kratzig, and M. Wohlecke, "Composition dependence of the ultraviolet absorption edge in lithium tantalate," J. Appl. Phys. 93, 3102-3104 (2003). [CrossRef]
  22. M. S. Shumate, "Interferometric measurements of large indices of refraction," Appl. Opt. 5, 327-331 (1966). [CrossRef] [PubMed]
  23. M. DiDomenico, Jr. and S. H. Wemple, "Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects," J. Appl. Phys. 40, 720-734 (1969). [CrossRef]
  24. M. Aillerie, N. Théofanous, and M. D. Fontana, "Measurement of the electrooptic coefficients: description and comparison of the experimental techniques," Appl. Phys. B 70, 317-334 (2000). [CrossRef]
  25. C. Bosshard, K. Sutter, R. Schlesser, and P. Günter, "Electro-optic effects in molecular crystals," J. Opt. Soc. Am. B 10, 867-885 (1993). [CrossRef]
  26. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 251, 333-343 (2003). [CrossRef]
  27. R. T. Smith and F. S. Welsh, "Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate," J. Appl. Phys. 42, 2219-2230 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited