OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 2 — Feb. 1, 2006
  • pp: 332–340

Generation and complete characterization of intense mid-infrared ultrashort pulses

Cathie Ventalon, James M. Fraser, Jean-Pierre Likforman, D. M. Villeneuve, P. B. Corkum, and Manuel Joffre  »View Author Affiliations

JOSA B, Vol. 23, Issue 2, pp. 332-340 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intense mid-infrared pulses tunable between 5 and 14 μ m with pulse energies of several microjoules were generated by difference-frequency mixing (DFM) in a GaSe crystal. Longer wavelengths (up to 18 μ m ) were achieved by DFM in a CdSe crystal. The infrared pulses were then characterized using various techniques: The spectrum was measured using a Fourier-transform spectrometer, which was then modified to determine the interferometric second-order autocorrelation. The electric field spectral phase was measured using the same setup, thus leading to a full characterization of the mid-infrared pulses. The spectral phase was measured using the time-domain homodyne optical technique for spectral phase interferometry for direct electric field reconstruction, where spectral interferometry was replaced with time-domain interferometry. The measured pulse duration was 100 fs , nearly transform limited.

© 2006 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6340) Spectroscopy : Spectroscopy, infrared
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Nonlinear Optics

Original Manuscript: March 14, 2005
Revised Manuscript: July 13, 2005
Manuscript Accepted: August 8, 2005

Cathie Ventalon, James M. Fraser, Jean-Pierre Likforman, D. M. Villeneuve, P. B. Corkum, and Manuel Joffre, "Generation and complete characterization of intense mid-infrared ultrashort pulses," J. Opt. Soc. Am. B 23, 332-340 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Elsaesser and M. Woerner, "Femtosecond infrared spectroscopy of semiconductors and semiconductor nanostructures," Phys. Rep. 321, 253-305 (1999). [CrossRef]
  2. C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. U.S.A. 101, 13216-13220 (2004). [CrossRef] [PubMed]
  3. H. Liu, "New quantum devices," Physica E (Amsterdam) 8, 170-173 (2000).
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  5. O. Gauthier-Lafaye, P. Boucaud, F. H. Julien, S. Sauvage, J. M. Lourtioz, V. Thierry-Mieg, and R. Planel, "Long-wavelength (approximately=15.5 micron) unipolar semiconductor laser in GaAs quantum wells," Appl. Phys. Lett. 71, 3619-3621 (1997). [CrossRef]
  6. K. Reimann, R. P. Smith, A. M. Weiner, T. Elsaesser, and M. Woerner, "Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter," Opt. Lett. 28, 471-473 (2003). [CrossRef] [PubMed]
  7. K. Reimann, T. Elsaesser, R. Hey, C.-W. Luo, K. Ploog, and M. Woerner, "Rabi flopping of intersubband transitions in GaAs/AlGaAs MQWs," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science (Optical Society of America, 2003), paper QFD4.
  8. L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, "Getting ahead of IVR: a demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003). [CrossRef]
  9. R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, "Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory," Appl. Phys. Lett. 75, 1060-1062 (1999). [CrossRef]
  10. J.-P. Likforman, M. Mehendale, D. M. Villeneuve, M. Joffre, and P. B. Corkum, "Conversion of high-power 15 fs visible pulses to the mid-infrared," Opt. Lett. 26, 99-101 (2001). [CrossRef]
  11. J. M. Fraser, I. W. Cheung, F. Legare, D. M. Villeneuve, J. P. Lifforman, M. Joffre, and P. B. Corkum, "High-energy sub-picosecond pulse generation from 3to20 µm," Appl. Phys. B 74, S153-S156 (2002). [CrossRef]
  12. S. Fossier, S. Salaun, J. Mangin, O. Bidault, I. Thenot, J. J. Zondy, W. D. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, "Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thionidate," J. Opt. Soc. Am. B 21, 1981-2007 (2004).
  13. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3to20 µm," J. Opt. Soc. Am. B 17, 2086-2094 (2000). [CrossRef]
  14. P. Hamm, R. A. Kaindl, and J. Stenger, "Noise suppression in femtosecond mid-infrared light sources," Opt. Lett. 25, 1798-1800 (2000). [CrossRef]
  15. J. M. Fraser and K. C. Hall, "Interferometric nonlinear mixing in multipass femtosecond optical parametric amplification," Opt. Express 5, 21-27 (1999). [CrossRef] [PubMed]
  16. A. O. Okorogu, S. B. Mirov, W. Lee, D. I. Crouthamel, N. Jenkins, A. Yu. Dergachev, K. L. Vodopyanov, and V. V. Badikov, "Tunable middle infrared downconversion in GaSe and AgGaS2," Opt. Commun. 155, 307-313 (1998). [CrossRef]
  17. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, 1999).
  18. K. L. Vodopyanov, S. B. Mirov, V. G. Voevodin, and P. G. Schunemann, "Two-photon absorption in GaSe and CdGeAs2," Opt. Commun. 155, 47-50 (1998). [CrossRef]
  19. SNLO Nonlinear Optics Code, available from A. V. Smith, Sandia National Laboratories, Albuquerque, New Mexico 87185-1423, http:/www.sandia.gov/imrl/XWEB1128/snloftp.htm.
  20. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, 1986).
  21. K. Naganuma, K. Mogi, and H. Yamada, "General method for ultrashort light pulse chirp measurement," IEEE J. Quantum Electron. 25, 1225-1233 (1989). [CrossRef]
  22. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997). [CrossRef]
  23. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998). [CrossRef]
  24. B. A. Richman, K. W. DeLong, and R. Trebino, "Generation and measurement of ultrashort pulses from the Stanford superconducting accelerator free-electron laser," in Proc. SPIE 2377, 136-147 (1995). [CrossRef]
  25. B. A. Richman, M. A. Krumbügel, and R. Trebino, "Temporal characterization of mid-IR free-electron-laser pulses by frequency-resolved optical gating," Opt. Lett. 22, 721-723 (1997). [CrossRef] [PubMed]
  26. S. Yeremenko, A. Baltuska, F. de Haan, M. S. Pshenichnikov, and D. A. Wiersma, "Frequency-resolved pump-probe characterization of femtosecond infrared pulses," Opt. Lett. 27, 1171-1173 (2002). [CrossRef]
  27. D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, "Amplitude and phase measurement of mid-infrared femtosecond pulses by using cross-correlation frequency-resolved optical gating," Opt. Lett. 25, 1478-1480 (2000). [CrossRef]
  28. Q. Wu and X.-C. Zhang, "Free-space electro-optics sampling of mid-infrared pulses," Appl. Phys. Lett. 71, 1285-1286 (1997). [CrossRef]
  29. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000). [CrossRef]
  30. K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, "Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer," Opt. Lett. 30, 1228-1230 (2005). [CrossRef] [PubMed]
  31. C. Ventalon, J. M. Fraser, and M. Joffre, "Time-domain interferometry for direct electric field reconstruction of mid-infrared femtosecond pulses," Opt. Lett. 28, 1826-1828 (2003). [CrossRef] [PubMed]
  32. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, "Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector," Opt. Lett. 28, 278-280 (2003). [CrossRef] [PubMed]
  33. C. Dorrer, P. Londero, and I. A. Walmsley, "Homodyne detection in spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 26, 1510-1512 (2001). [CrossRef]
  34. C. Dorrer, "Influence of the calibration of the detector on spectral interferometry," J. Opt. Soc. Am. B 16, 1160-1168 (1999). [CrossRef]
  35. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  36. L. Lepetit, G. Chériaux, and M. Joffre, "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy," J. Opt. Soc. Am. B 12, 2467-2474 (1995). [CrossRef]
  37. N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, "Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses," Opt. Lett. 27, 433-435 (2002). [CrossRef]
  38. C. Dorrer, E. M. Kosik, and I. A. Walmsley, "Direct space-time characterization of the electric fields of ultrashort optical pulses," Opt. Lett. 27, 548-550 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited