OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 3 — Mar. 1, 2006
  • pp: 404–414

Spectroscopy of metamaterials from infrared to optical frequencies

Willie J. Padilla, David R. Smith, and Dimitri N. Basov  »View Author Affiliations


JOSA B, Vol. 23, Issue 3, pp. 404-414 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000404


View Full Text Article

Enhanced HTML    Acrobat PDF (1034 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review both the theoretical electromagnetic response and the spectroscopic measurements of metamaterials. To critically examine published results for metamaterial structures operating in the range from terahertz to optical frequencies, we focus on protocols allowing one to extract the optical constants from experimental observables. We discuss the complexity of this task when applied to metamaterials exhibiting electric, magnetic, and magneto-optical response. The general theory of the electromagnetic response of such systems is presented and methods are described. Finally, we briefly overview possible solutions for implementing metamaterials with tunable resonant behavior.

© 2006 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(160.3820) Materials : Magneto-optical materials
(160.4760) Materials : Optical properties
(300.6270) Spectroscopy : Spectroscopy, far infrared

ToC Category:
Metamaterials

History
Original Manuscript: August 31, 2005
Manuscript Accepted: October 15, 2005

Citation
Willie J. Padilla, David R. Smith, and Dimitri N. Basov, "Spectroscopy of metamaterials from infrared to optical frequencies," J. Opt. Soc. Am. B 23, 404-414 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-3-404


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  2. J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37-45 (2004). [CrossRef]
  3. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  4. L. I. Mandelshtam, "Lectures on some problems of the theory of oscillations (1944)," in Complete Collection of Works (Academy of Sciences, 1950), Vol. 5, pp. 428-467 (in Russian).
  5. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  7. This is a valid requirement for isotropic materials; however, the situation is more complicated for anisotropic and bianisotropic materials, and perhaps the requirement V¯g∙V¯p<0 should be conisdered.
  8. A. J. Sievers III and M. Tinkham, "Far-infrared exchange resonance in ytterbium iron garnet," Phys. Rev. 124, 321-325 (1963). [CrossRef]
  9. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  10. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001). [CrossRef] [PubMed]
  11. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  12. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004). [CrossRef] [PubMed]
  13. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 37402 (2005). [CrossRef]
  14. F. Wooten, Optical Properties of Solids (Academic, 1972).
  15. For example, see M. Born and E. Wolf, Principles of Optics6th ed. (Cambridge U. Press, 1997), p. 312.
  16. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  17. D. R. Smith, Department of Electrical and Computer Engineering, Duke University, Durham, N.C. 27708 (personal communication, 2005).
  18. K. Aydina, K. Guven, C. M. Soukoulis, and E. Ozbay, "Observation of negative refraction and negative phase velocity in left-handed metamaterials," Appl. Phys. Lett. 86, 124102 (2005). [CrossRef]
  19. V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," http://xxx.lanl.gov/abs/physics/0504091.
  20. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  21. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004). [CrossRef] [PubMed]
  22. R. N. Bracewell, "Analogues of an ionized medium," Wireless Eng. 31, 320-326 (1954).
  23. W. Rotman, "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag. AP10, 82-95 (1962). [CrossRef]
  24. R. Ulrich, "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys. 7, 37-55 (1966). [CrossRef]
  25. T. Timusk and P. L. Richards, "Near millimeter wave bandpass filters," Appl. Opt. 20, 1355-1360 (1981). [CrossRef] [PubMed]
  26. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998). [CrossRef]
  27. If the self-inductance of the wires is sufficiently large, by design, then the effective mass of the electrons may be renormalized, and a factor in addition to the number density must be taken into account. See Ref. .
  28. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003). [CrossRef]
  29. R. Marques, F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B 65, 144440 (2002). [CrossRef]
  30. J. A. Kong, Electromagnetic Wave Theory (Wiley, 1990).
  31. Media are reciprocal if epsilon=epsilon^T and µ=µ^T and xi=−zeta^T, where T denotes the transpose. For example, see Ref. .
  32. A.-C. Hsu, Y.-K. Cheng, K.-H. Chen, J.-L. Chern, S.-C. Wu, C.-F. Chen, H. Chang, Y.-H. Lien, and J.-T. Shy, "Far-infrared resonance in split ring resonators," Jpn. J. Appl. Phys., Part 1 43, L176-L179 (2004). [CrossRef]
  33. H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, "Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial," Phys. Rev. Lett. 94, 63901 (2005). [CrossRef]
  34. W. J. Padilla, "Group theoretical description of artificial magnetic metamaterials utilized for negative index of refraction," http://xxx.lanl.gov/abs/cond-mat/0508307.
  35. S. O'Brien and J. B. Pendry, "Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys.: Condens. Matter 14, 6383-6394 (2002). [CrossRef]
  36. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood,and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  37. T. Weiland, R. Schuhmann, A. M. Vetter, D. R. Smith, D. C. Vier, and S. Schultz, "Ab initio numerical simulation of left-handed metamaterials: comparison of calculations and experiments," J. Appl. Phys. 90, 5419-5424 (2001). [CrossRef]
  38. Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506 (2005). [CrossRef]
  39. J. Shan, F. Wang, E. Knoesel, M. Bonn, and T. F. Heinz, "Measurement of the frequency-dependent conductivity in sapphire," Phys. Rev. Lett. 90, 247401 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited