## Eikonal equation for a general anisotropic or chiral medium: application to a negative-graded index-of-refraction lens with an anisotropic material

JOSA B, Vol. 23, Issue 3, pp. 439-450 (2006)

http://dx.doi.org/10.1364/JOSAB.23.000439

Enhanced HTML Acrobat PDF (939 KB)

### Abstract

We discuss the numerical simulation of a graded refractive index (GRIN) lens with a general anisotropic medium and compare it with an equivalent nongraded positive-index-of-refraction-material (PIM) lens with an isotropic medium. To evaluate lens performance, we developed a modified eikonal equation valid for the most general form of an anisotropic or chiral medium. Our approach is more comprehensive than previous work in this area and is obtained from the dispersion relation of Maxwell’s equations in the eikonal approximation. The software developed for the numerical integration of the modified eikonal equation is described. Subsequently, a full finite-difference time-dependent simulation was performed to verify the validity of the eikonal calculations. The performance of the GRIN lens is found to be improved over the equivalent PIM one. The GRIN lens is also five to ten times lighter than the equivalent PIM. A GRIN lens operating at 15 GHz is now under fabrication at Boeing, and the experimental results of this lens will be reported in a forthcoming paper.

© 2006 Optical Society of America

**OCIS Codes**

(080.1010) Geometric optics : Aberrations (global)

(080.2710) Geometric optics : Inhomogeneous optical media

(080.2720) Geometric optics : Mathematical methods (general)

(080.3620) Geometric optics : Lens system design

(080.3630) Geometric optics : Lenses

**ToC Category:**

Metamaterials

**History**

Original Manuscript: July 8, 2005

Revised Manuscript: October 24, 2005

Manuscript Accepted: October 27, 2005

**Citation**

Claudio G. Parazzoli, Benjamin E. C. Koltenbah, Robert B. Greegor, Tai A. Lam, and Minas H. Tanielian, "Eikonal equation for a general anisotropic or chiral medium: application to a negative-graded index-of-refraction lens with an anisotropic material," J. Opt. Soc. Am. B **23**, 439-450 (2006)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-3-439

Sort: Year | Journal | Reset

### References

- V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
- R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
- C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
- D. Shurig and D. R. Smith, "Negative index lens aberrations," Phys. Rev. E 70, 065601(R) (2004). [CrossRef]
- C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Taniliean, and D. C. Vier, "Performance of a negative index of refraction lens," Appl. Phys. Lett. 84, 3232-3234 (2004). [CrossRef]
- P. Vodo, P. V. Parimi, W. T. Lu, and S. Sridar, "Focusing by planoconcave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005). [CrossRef]
- D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609 (2005). [CrossRef]
- R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005). [CrossRef]
- E. W. Marchand, Gradient Index Optics (Academic, 1978).
- E. Langenbach, "Raytracing in gradient index optics," Proc. SPIE 1780, 486-490 (1993).
- M. Born and E. Wolfe, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
- V. A. De Lorenci, R. Klippert, and D. H. Teodoro, "Birefringence in nonlinear anisotropic dielectric media," Phys. Rev. D 70, 124035 (2004). [CrossRef]
- M. Kline and I. W. Kay, Electromagnetic Theory and Geometrical Optics (Interscience, 1965).
- D. R. Smith, P. Kolinko, and D. Schurig, "Negative refraction in indefinite media," J. Opt. Soc. Am. B 21, 1032-1043 (2004). [CrossRef]
- See Ref. , Sec. 3.1.1.
- P. R. Garabedian, Partial Differential Equations (Wiley, 1964).
- D. Hanselman and B. Littlefield, Mastering MATLAB 6 (Prentice Hall, 2001). [PubMed]
- Computer Simulation Technology of America.
- R. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, D. C. Vier, S. Schultz, D. R. Smith, and D. Schurig, "Microwave focusing and beam collimation using negative index of refraction lenses," Special Issue on Metamaterials, IEE Proc. H. Microwaves, Antennas Propag., submitted for publication.
- S. Wolfram, The Mathematica Book, 3rd ed. (Wolfram Media/Cambridge U. Press, 1996).
- See, for example, M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1972), Sec. 3.8.3 and 3.12, Example 6.
- See Ref. , Chap. 5 and 9.
- See Ref. , Table 9.2.
- See Ref. , Sec. 9.2.3, Eq. (20).
- D. Schurig, Duke University, Durham, N. C. 27707 (personal communication, 2005).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.