OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 3 — Mar. 1, 2006
  • pp: 498–505

Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media

Robyn Wangberg, Justin Elser, Evgenii E. Narimanov, and Viktor A. Podolskiy  »View Author Affiliations


JOSA B, Vol. 23, Issue 3, pp. 498-505 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000498


View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop an approach to use nanostructured plasmonic materials as a nonmagnetic negative-refractive-index system at optical and near-infrared frequencies. In contrast to conventional negative-refraction materials, our design does not require periodicity and thus is highly tolerant to fabrication defects. Moreover, since the proposed materials are intrinsically nonmagnetic, their performance is not limited to the proximity of a resonance, so the resulting structure has relatively low loss. We develop the analytical description of the relevant electromagnetic phenomena and justify our analytic results via numerical solutions of Maxwell equations.

© 2006 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(160.4760) Materials : Optical properties
(350.5730) Other areas of optics : Resolution

ToC Category:
Metamaterials

History
Original Manuscript: June 29, 2005
Revised Manuscript: August 11, 2005
Manuscript Accepted: August 21, 2005

Citation
Robyn Wangberg, Justin Elser, Evgenii E. Narimanov, and Viktor A. Podolskiy, "Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media," J. Opt. Soc. Am. B 23, 498-505 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-3-498


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57(6), 37-43 (2004). [CrossRef]
  3. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  4. G. Shvets, "Photonic approach to making a materials with a negative index of refraction," Phys. Rev. B 67, 035109-1-8 (2003). [CrossRef]
  5. A. L. Pokrovsky and A. L. Efros, "Lens based upon the use of left-handed materials," Appl. Opt. 42, 5701-5705 (2003). [CrossRef] [PubMed]
  6. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Phys. Rev. B 69, 165112-1-7 (2004). [CrossRef]
  7. V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101(R)-1-4 (2005). [CrossRef]
  8. I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617-1-9 (2004). [CrossRef]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  10. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005). [CrossRef] [PubMed]
  11. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations of subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  12. R. Merlin, "Analytical solution to the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1292 (2004). [CrossRef]
  13. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative refractive index materials," Phys. Rev. E 70, 035602(R)-1 4 (2004). [CrossRef]
  14. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401-1-4 (2005). [CrossRef]
  15. A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403-1-4 (2004). [CrossRef]
  16. G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902-1-4 (2004). [CrossRef]
  17. G. Shvets and Y. A. Urzhumov, "Electric and magnetic properties of subwavelength plasmonic crystals," J. Opt. B 7, S23-S31 (2005).
  18. S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, "Nonlinear surface waves at the interfaces of left-handed electromagnetic media," Phys. Rev. E 72, 0366151-6 (2005). [CrossRef]
  19. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  20. C. Parazzoli, R. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-1-4 (2003). [CrossRef]
  21. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003). [CrossRef] [PubMed]
  22. S. Foteinopoulou, E. N. Economou, and C. M. Souloulis, "Refraction in a media with negative refractive index," Phys. Rev. Lett. 90, 107402-1-4 (2003). [CrossRef]
  23. Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, "Experimental demonstration of negative refraction imaging in both amplitude and phase," Opt. Express 13, 2007-2012 (2005). [CrossRef] [PubMed]
  24. I. I. Smolyaninov, J. Elliott, G. Wurtz, A. V. Zayats, and C. C. Davis, "Immersion microscopy based on photonic crystal materials," arXiv:cond-mat/0505351-1-23 (2005).
  25. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, 2nd ed. (Reed, 1984). Vol. 8.
  26. T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  27. V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," arXiv:physics/050491-1-17 (2005).
  28. S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004). [CrossRef]
  29. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002). [CrossRef]
  30. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003). [CrossRef] [PubMed]
  31. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004). [CrossRef] [PubMed]
  32. It can be shown that for losses {epsilon,µ}′′/∣{epsilon,µ}′∣>0.3 even the near-field resolution of the NIM-based system is smaller than that of conventional near-field optics.
  33. V. A. Podolskiy, N. A. Kuhta, and G. Milton, "Optimizing the superlens: manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87, 231113 1-3 (2005). [CrossRef]
  34. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  35. A. L. Efros and A. L. Pokrovsky, "Dielectric photonic crystals as medium with negative electric permittivity and magnetic permeability," Solid State Commun. 129, 643-647 (2004). [CrossRef]
  36. V. A. Podolskiy, L. Alekseev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005). [CrossRef]
  37. The TEM wave formally corresponds to a TM wave with kappa=0. As seen from Eqs. , such a wave cannot propagate in NIM described here.
  38. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics (Reed, 1984), Vol. 10.
  39. See, e.g., J. Opt. A , Special Issue on Nanostructured Optical Meta-Materials 7, (2005).
  40. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, 1980).
  41. A. Alú and N. Engheta, "An overview of salient properties of planar guided-wave structures with double-negative (DNG) and single-negative (SNG) layers," in Negative Refraction Metamaterials: Fundamental Properties and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley, 2005).
  42. A. A. Govyadinov and V. A. Podolskiy, "Using photonic crystals to build optical funnels," Phys. Rev. Lett., submitted for publication.
  43. This particular realization of layered NIM structure for IR frequencies was earlier proposed in Ref. .
  44. O. Levy and D. Stroud, "Maxwell-Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997). [CrossRef]
  45. A. Lakhtakia, B. Michel, and W. S. Weiglhofer, "The role of anisotropy in the Maxwell-Garnett and Bruggeman formalisms for uniaxial particulate composite media," J. Phys. D 30, 230-240 (1997). [CrossRef]
  46. V. A. Podolskiy and E. E. Narimanov, "Nanoplasmonic approach to strongly anisotropic optical materials," in Conference on Lasers and Electro-optics/Quantum Electronics Conference/Photonics Applications Systems Technologies, OSA Trends in Optics and Photonics Series Optical Society of America (2005), paper JThC3. [PubMed]
  47. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  48. G. Shvets, A. K. Sarychev, and V. M. Shalaev, "Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits," Proc. SPIE 5218, 156-165 (2003). [CrossRef]
  49. A. L. Pokrovsky and A. L. Efros, "Nonlocal electrodynamics of two dimensional wire mesh photonic crystals," Phys. Rev. B 65, 04510-1-8 (2002). [CrossRef]
  50. Similar to any nanostructured composite material, the dielectric constant of nanocylinder array may be influenced by the spatial dispersion. We defer the detailed study of these effects to our later work.
  51. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A, Pure Appl. Opt. 7, S32-S37 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited