OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 3 — Mar. 1, 2006
  • pp: 553–570

Volumetric layered transmission-line metamaterial exhibiting a negative refractive index

Ashwin K. Iyer and George V. Eleftheriades  »View Author Affiliations


JOSA B, Vol. 23, Issue 3, pp. 553-570 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000553


View Full Text Article

Enhanced HTML    Acrobat PDF (1397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine a new class of volumetric metamaterials based on two-dimensional (2D) transmission-line layers that exhibit a negative refractive index (NRI). The dispersion characteristics of a single 2D layer are revealed through a periodic analysis, and the effective-medium response of the volumetric layered topology is predicted by an intuitive equivalent circuit model. Dispersion and transmission characteristics are also obtained for various designs by using full-wave finite-element method (FEM) simulations, including one design meeting the requirements of Veselago’s slab lens in free space, and suggest an isotropic NRI over bandwidths anywhere from 25% to 45%. Finally, the potential to implement these metamaterials from terahertz to near-infrared and optical frequencies is discussed.

© 2006 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(220.3630) Optical design and fabrication : Lenses
(230.3990) Optical devices : Micro-optical devices
(350.4010) Other areas of optics : Microwaves

ToC Category:
Metamaterials

History
Original Manuscript: July 11, 2005
Manuscript Accepted: August 21, 2005

Citation
Ashwin K. Iyer and George V. Eleftheriades, "Volumetric layered transmission-line metamaterial exhibiting a negative refractive index," J. Opt. Soc. Am. B 23, 553-570 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-3-553


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. E. Kock, "Metallic delay lenses," Bell Syst. Tech. J. 27, 58-82 (1948).
  2. W. E. Kock, "Radio lenses," Bell Lab. Rec. 24, 177-216 (1946).
  3. W. E. Kock, "Metal lens antennas," in Proceedings of IRE and Waves and Electrons (Institute of Radio Engineers, 1946), pp. 828-836.
  4. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (Wiley-IEEE, 1990). [CrossRef]
  5. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968) [translation based on the original Russian document, dated 1967]. [CrossRef]
  6. W. Rotman, "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag. AP-10, 82-85 (1962). [CrossRef]
  7. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  8. D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett. 76, 2480-2483 (1996). [CrossRef] [PubMed]
  9. R. N. Bracewell, "Analogues of an ionized medium: applications to the ionosphere," Wirel. Eng. 31, 320-326 (1954).
  10. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  11. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  12. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002). [CrossRef]
  13. A. Sanada, C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory Tech. 52, 1252-1263 (2004). [CrossRef]
  14. G. Kron, "Equivalent circuit of the field equations of Maxwell," Proc. IRE 32, 289-299 (1944). [CrossRef]
  15. J. R. Whinnery and S. Ramo, "A new approach to the solution of high-frequency field problems," Proc. IRE 32, 284-288 (1944). [CrossRef]
  16. N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005). [CrossRef] [PubMed]
  17. A. K. Sarychev and V. M. Shalaev, "Plasmonic nanowire materials," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 313-338. [CrossRef]
  18. C. R. Brewitt-Taylor and P. B. Johns, "On the construction and numerical solution of transmission-line and lumped network models of Maxwell's equations," Int. J. Numer. Methods Eng. 15, 13-30 (1980). [CrossRef]
  19. A. Grbic and G. V. Eleftheriades, "An isotropic three-dimensional negative-refractive-index transmission-line metamaterial," J. Appl. Phys. 98, 043106 (2005). [CrossRef]
  20. A. Grbic and G. V. Eleftheriades, "Super-resolving negative-refractive-index transmission-line lenses," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 93-170. [CrossRef]
  21. W. J. Hoefer, P. P. So, D. Thompson, and M. M. Tentzeris, "Topology and design of wideband 3D metamaterials made of periodically loaded transmission line arrays," presented at the IEEE Microwave Theory and Techniques Society International Microwave Symposium, Long Beach, Calif., June 12-17, 2005.
  22. F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005). [CrossRef]
  23. A. Grbic and G. V. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," Special Issue on Metamaterials, IEEE Trans. Antennas Propag. 51, 2604-2611 (2003). [CrossRef]
  24. A. K. Iyer, K. G. Balmain, and G. V. Eleftheriades, "Dispersion analysis of resonance cone behaviour in magnetically anisotropic transmission-line metamaterials," in 2004 IEEE Antennas and Propagation Society International Symposium Digest (IEEE, 2004), pp. 3147-3150.
  25. A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wirel. Compon. Lett. 14, 68-70 (2004). [CrossRef]
  26. A. K. Iyer and G. V. Eleftheriades, "Negative-refractive-index transmission-line metamaterials," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 1-52. [CrossRef]
  27. R. Simons, Coplanar Waveguide Circuits, Components, and Systems (Wiley, 2001). [CrossRef]
  28. J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005). [CrossRef]
  29. M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, "Resonant frequencies of a split-ring resonator: analytical solutions and numerical simulations," Microwave Opt. Technol. Lett. 44, 133-136 (2005). [CrossRef]
  30. G. V. Eleftheriades, O. Siddiqui, and A. K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators," IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003). [CrossRef]
  31. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  32. A. Alù and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling, and transparency," Special Issue on Metamaterials, IEEE Trans. Antennas Propag. 51, 2558-2571 (2003). [CrossRef]
  33. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  34. A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004). [CrossRef] [PubMed]
  35. A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, "Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial," Opt. Express 11, 696-708 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-696. [CrossRef] [PubMed]
  36. G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003). [CrossRef]
  37. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited